| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 2 |
1
|
ad2antrr |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> -u A e. RR ) |
| 3 |
|
lt0neg1 |
|- ( A e. RR -> ( A < 0 <-> 0 < -u A ) ) |
| 4 |
3
|
biimpa |
|- ( ( A e. RR /\ A < 0 ) -> 0 < -u A ) |
| 5 |
4
|
adantr |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < -u A ) |
| 6 |
|
simpr |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( B e. RR /\ 0 < B ) ) |
| 7 |
|
mulgt0 |
|- ( ( ( -u A e. RR /\ 0 < -u A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( -u A x. B ) ) |
| 8 |
2 5 6 7
|
syl21anc |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( -u A x. B ) ) |
| 9 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> A e. CC ) |
| 11 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 12 |
11
|
ad2antrl |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> B e. CC ) |
| 13 |
10 12
|
mulneg1d |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( -u A x. B ) = -u ( A x. B ) ) |
| 14 |
8 13
|
breqtrd |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < -u ( A x. B ) ) |
| 15 |
|
remulcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
| 16 |
15
|
ad2ant2r |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( A x. B ) e. RR ) |
| 17 |
16
|
lt0neg1d |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A x. B ) < 0 <-> 0 < -u ( A x. B ) ) ) |
| 18 |
14 17
|
mpbird |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( A x. B ) < 0 ) |