Metamath Proof Explorer


Theorem mulltgt0

Description: The product of a negative and a positive number is negative. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Assertion mulltgt0 AA<0B0<BAB<0

Proof

Step Hyp Ref Expression
1 renegcl AA
2 1 ad2antrr AA<0B0<BA
3 lt0neg1 AA<00<A
4 3 biimpa AA<00<A
5 4 adantr AA<0B0<B0<A
6 simpr AA<0B0<BB0<B
7 mulgt0 A0<AB0<B0<AB
8 2 5 6 7 syl21anc AA<0B0<B0<AB
9 recn AA
10 9 ad2antrr AA<0B0<BA
11 recn BB
12 11 ad2antrl AA<0B0<BB
13 10 12 mulneg1d AA<0B0<BAB=AB
14 8 13 breqtrd AA<0B0<B0<AB
15 remulcl ABAB
16 15 ad2ant2r AA<0B0<BAB
17 16 lt0neg1d AA<0B0<BAB<00<AB
18 14 17 mpbird AA<0B0<BAB<0