| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 2 |
1
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → - 𝐴 ∈ ℝ ) |
| 3 |
|
lt0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
| 4 |
3
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 < - 𝐴 ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < - 𝐴 ) |
| 6 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
| 7 |
|
mulgt0 |
⊢ ( ( ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( - 𝐴 · 𝐵 ) ) |
| 8 |
2 5 6 7
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( - 𝐴 · 𝐵 ) ) |
| 9 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 10 |
9
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 11 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 12 |
11
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 13 |
10 12
|
mulneg1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( - 𝐴 · 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
| 14 |
8 13
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < - ( 𝐴 · 𝐵 ) ) |
| 15 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 16 |
15
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 17 |
16
|
lt0neg1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 · 𝐵 ) < 0 ↔ 0 < - ( 𝐴 · 𝐵 ) ) ) |
| 18 |
14 17
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) < 0 ) |