Metamath Proof Explorer


Theorem mulne0

Description: The product of two nonzero numbers is nonzero. (Contributed by NM, 30-Dec-2007)

Ref Expression
Assertion mulne0
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A x. B ) =/= 0 )

Proof

Step Hyp Ref Expression
1 mulne0b
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A =/= 0 /\ B =/= 0 ) <-> ( A x. B ) =/= 0 ) )
2 1 biimpa
 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A x. B ) =/= 0 )
3 2 an4s
 |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A x. B ) =/= 0 )