| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem25.1 | ⊢ 𝑄  =  ( 𝑡  ∈  𝑇  ↦  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) | 
						
							| 2 |  | stoweidlem25.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | stoweidlem25.3 | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 4 |  | stoweidlem25.4 | ⊢ ( 𝜑  →  𝐷  ∈  ℝ+ ) | 
						
							| 5 |  | stoweidlem25.6 | ⊢ ( 𝜑  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 6 |  | stoweidlem25.7 | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 7 |  | stoweidlem25.8 | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 8 |  | stoweidlem25.9 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 9 |  | stoweidlem25.11 | ⊢ ( 𝜑  →  ( 1  /  ( ( 𝐾  ·  𝐷 ) ↑ 𝑁 ) )  <  𝐸 ) | 
						
							| 10 |  | eldifi | ⊢ ( 𝑡  ∈  ( 𝑇  ∖  𝑈 )  →  𝑡  ∈  𝑇 ) | 
						
							| 11 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 12 | 3 | nnnn0d | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 13 | 1 5 11 12 | stoweidlem12 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑄 ‘ 𝑡 )  =  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) | 
						
							| 14 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  1  ∈  ℝ ) | 
						
							| 15 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑃 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 16 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 17 | 15 16 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 18 | 14 17 | resubcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) )  ∈  ℝ ) | 
						
							| 19 | 3 11 | nnexpcld | ⊢ ( 𝜑  →  ( 𝐾 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 20 | 19 | nnnn0d | ⊢ ( 𝜑  →  ( 𝐾 ↑ 𝑁 )  ∈  ℕ0 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐾 ↑ 𝑁 )  ∈  ℕ0 ) | 
						
							| 22 | 18 21 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) )  ∈  ℝ ) | 
						
							| 23 | 13 22 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑄 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 24 | 10 23 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 𝑄 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 25 | 3 | nnred | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 26 | 4 | rpred | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 27 | 25 26 | remulcld | ⊢ ( 𝜑  →  ( 𝐾  ·  𝐷 )  ∈  ℝ ) | 
						
							| 28 | 27 11 | reexpcld | ⊢ ( 𝜑  →  ( ( 𝐾  ·  𝐷 ) ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 29 | 3 | nncnd | ⊢ ( 𝜑  →  𝐾  ∈  ℂ ) | 
						
							| 30 | 3 | nnne0d | ⊢ ( 𝜑  →  𝐾  ≠  0 ) | 
						
							| 31 | 4 | rpcnne0d | ⊢ ( 𝜑  →  ( 𝐷  ∈  ℂ  ∧  𝐷  ≠  0 ) ) | 
						
							| 32 |  | mulne0 | ⊢ ( ( ( 𝐾  ∈  ℂ  ∧  𝐾  ≠  0 )  ∧  ( 𝐷  ∈  ℂ  ∧  𝐷  ≠  0 ) )  →  ( 𝐾  ·  𝐷 )  ≠  0 ) | 
						
							| 33 | 29 30 31 32 | syl21anc | ⊢ ( 𝜑  →  ( 𝐾  ·  𝐷 )  ≠  0 ) | 
						
							| 34 | 4 | rpcnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 35 | 29 34 | mulcld | ⊢ ( 𝜑  →  ( 𝐾  ·  𝐷 )  ∈  ℂ ) | 
						
							| 36 |  | expne0 | ⊢ ( ( ( 𝐾  ·  𝐷 )  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( ( ( 𝐾  ·  𝐷 ) ↑ 𝑁 )  ≠  0  ↔  ( 𝐾  ·  𝐷 )  ≠  0 ) ) | 
						
							| 37 | 35 2 36 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐾  ·  𝐷 ) ↑ 𝑁 )  ≠  0  ↔  ( 𝐾  ·  𝐷 )  ≠  0 ) ) | 
						
							| 38 | 33 37 | mpbird | ⊢ ( 𝜑  →  ( ( 𝐾  ·  𝐷 ) ↑ 𝑁 )  ≠  0 ) | 
						
							| 39 | 28 38 | rereccld | ⊢ ( 𝜑  →  ( 1  /  ( ( 𝐾  ·  𝐷 ) ↑ 𝑁 ) )  ∈  ℝ ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 1  /  ( ( 𝐾  ·  𝐷 ) ↑ 𝑁 ) )  ∈  ℝ ) | 
						
							| 41 | 8 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝐸  ∈  ℝ ) | 
						
							| 43 | 10 13 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 𝑄 ‘ 𝑡 )  =  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) | 
						
							| 44 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 45 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝐾  ∈  ℕ ) | 
						
							| 46 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝐷  ∈  ℝ+ ) | 
						
							| 47 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 48 | 10 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 49 | 47 48 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 𝑃 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 50 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  0  ∈  ℝ ) | 
						
							| 51 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 52 | 4 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝐷 ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  0  <  𝐷 ) | 
						
							| 54 | 7 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 55 | 50 51 49 53 54 | ltletrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  0  <  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 56 | 49 55 | elrpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 𝑃 ‘ 𝑡 )  ∈  ℝ+ ) | 
						
							| 57 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 58 |  | rsp | ⊢ ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 )  →  ( 𝑡  ∈  𝑇  →  ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 59 | 57 48 58 | sylc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 60 | 59 | simpld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  0  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 61 | 59 | simprd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 𝑃 ‘ 𝑡 )  ≤  1 ) | 
						
							| 62 | 44 45 46 56 60 61 54 | stoweidlem1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) )  ≤  ( 1  /  ( ( 𝐾  ·  𝐷 ) ↑ 𝑁 ) ) ) | 
						
							| 63 | 43 62 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 𝑄 ‘ 𝑡 )  ≤  ( 1  /  ( ( 𝐾  ·  𝐷 ) ↑ 𝑁 ) ) ) | 
						
							| 64 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 1  /  ( ( 𝐾  ·  𝐷 ) ↑ 𝑁 ) )  <  𝐸 ) | 
						
							| 65 | 24 40 42 63 64 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 𝑄 ‘ 𝑡 )  <  𝐸 ) |