Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem25.1 |
⊢ 𝑄 = ( 𝑡 ∈ 𝑇 ↦ ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
2 |
|
stoweidlem25.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
stoweidlem25.3 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
4 |
|
stoweidlem25.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
5 |
|
stoweidlem25.6 |
⊢ ( 𝜑 → 𝑃 : 𝑇 ⟶ ℝ ) |
6 |
|
stoweidlem25.7 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) |
7 |
|
stoweidlem25.8 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) |
8 |
|
stoweidlem25.9 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
9 |
|
stoweidlem25.11 |
⊢ ( 𝜑 → ( 1 / ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) < 𝐸 ) |
10 |
|
eldifi |
⊢ ( 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) → 𝑡 ∈ 𝑇 ) |
11 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
12 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
13 |
1 5 11 12
|
stoweidlem12 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑄 ‘ 𝑡 ) = ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
14 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 1 ∈ ℝ ) |
15 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑡 ) ∈ ℝ ) |
16 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ∈ ℕ0 ) |
17 |
15 16
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ∈ ℝ ) |
18 |
14 17
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ∈ ℝ ) |
19 |
3 11
|
nnexpcld |
⊢ ( 𝜑 → ( 𝐾 ↑ 𝑁 ) ∈ ℕ ) |
20 |
19
|
nnnn0d |
⊢ ( 𝜑 → ( 𝐾 ↑ 𝑁 ) ∈ ℕ0 ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐾 ↑ 𝑁 ) ∈ ℕ0 ) |
22 |
18 21
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ∈ ℝ ) |
23 |
13 22
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑄 ‘ 𝑡 ) ∈ ℝ ) |
24 |
10 23
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 𝑄 ‘ 𝑡 ) ∈ ℝ ) |
25 |
3
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
26 |
4
|
rpred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
27 |
25 26
|
remulcld |
⊢ ( 𝜑 → ( 𝐾 · 𝐷 ) ∈ ℝ ) |
28 |
27 11
|
reexpcld |
⊢ ( 𝜑 → ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ∈ ℝ ) |
29 |
3
|
nncnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
30 |
3
|
nnne0d |
⊢ ( 𝜑 → 𝐾 ≠ 0 ) |
31 |
4
|
rpcnne0d |
⊢ ( 𝜑 → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
32 |
|
mulne0 |
⊢ ( ( ( 𝐾 ∈ ℂ ∧ 𝐾 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐾 · 𝐷 ) ≠ 0 ) |
33 |
29 30 31 32
|
syl21anc |
⊢ ( 𝜑 → ( 𝐾 · 𝐷 ) ≠ 0 ) |
34 |
4
|
rpcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
35 |
29 34
|
mulcld |
⊢ ( 𝜑 → ( 𝐾 · 𝐷 ) ∈ ℂ ) |
36 |
|
expne0 |
⊢ ( ( ( 𝐾 · 𝐷 ) ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ≠ 0 ↔ ( 𝐾 · 𝐷 ) ≠ 0 ) ) |
37 |
35 2 36
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ≠ 0 ↔ ( 𝐾 · 𝐷 ) ≠ 0 ) ) |
38 |
33 37
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ≠ 0 ) |
39 |
28 38
|
rereccld |
⊢ ( 𝜑 → ( 1 / ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) ∈ ℝ ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 1 / ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) ∈ ℝ ) |
41 |
8
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝐸 ∈ ℝ ) |
43 |
10 13
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 𝑄 ‘ 𝑡 ) = ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
44 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝑁 ∈ ℕ ) |
45 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝐾 ∈ ℕ ) |
46 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝐷 ∈ ℝ+ ) |
47 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝑃 : 𝑇 ⟶ ℝ ) |
48 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝑡 ∈ 𝑇 ) |
49 |
47 48
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 𝑃 ‘ 𝑡 ) ∈ ℝ ) |
50 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 0 ∈ ℝ ) |
51 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝐷 ∈ ℝ ) |
52 |
4
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐷 ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 0 < 𝐷 ) |
54 |
7
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) |
55 |
50 51 49 53 54
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 0 < ( 𝑃 ‘ 𝑡 ) ) |
56 |
49 55
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 𝑃 ‘ 𝑡 ) ∈ ℝ+ ) |
57 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) |
58 |
|
rsp |
⊢ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) → ( 𝑡 ∈ 𝑇 → ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) ) |
59 |
57 48 58
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) |
60 |
59
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 0 ≤ ( 𝑃 ‘ 𝑡 ) ) |
61 |
59
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 𝑃 ‘ 𝑡 ) ≤ 1 ) |
62 |
44 45 46 56 60 61 54
|
stoweidlem1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ≤ ( 1 / ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) ) |
63 |
43 62
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 𝑄 ‘ 𝑡 ) ≤ ( 1 / ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) ) |
64 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 1 / ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) < 𝐸 ) |
65 |
24 40 42 63 64
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 𝑄 ‘ 𝑡 ) < 𝐸 ) |