| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem1.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
stoweidlem1.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 3 |
|
stoweidlem1.3 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
| 4 |
|
stoweidlem1.5 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 5 |
|
stoweidlem1.6 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 6 |
|
stoweidlem1.7 |
⊢ ( 𝜑 → 𝐴 ≤ 1 ) |
| 7 |
|
stoweidlem1.8 |
⊢ ( 𝜑 → 𝐷 ≤ 𝐴 ) |
| 8 |
|
1re |
⊢ 1 ∈ ℝ |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 10 |
4
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 11 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 12 |
10 11
|
reexpcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
| 13 |
9 12
|
resubcld |
⊢ ( 𝜑 → ( 1 − ( 𝐴 ↑ 𝑁 ) ) ∈ ℝ ) |
| 14 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 15 |
14 11
|
nn0expcld |
⊢ ( 𝜑 → ( 𝐾 ↑ 𝑁 ) ∈ ℕ0 ) |
| 16 |
13 15
|
reexpcld |
⊢ ( 𝜑 → ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ∈ ℝ ) |
| 17 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
| 19 |
18 11
|
nn0mulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℕ0 ) |
| 20 |
10 19
|
reexpcld |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 2 · 𝑁 ) ) ∈ ℝ ) |
| 21 |
9 20
|
resubcld |
⊢ ( 𝜑 → ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ∈ ℝ ) |
| 22 |
21 15
|
reexpcld |
⊢ ( 𝜑 → ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ∈ ℝ ) |
| 23 |
2
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 24 |
23 10
|
remulcld |
⊢ ( 𝜑 → ( 𝐾 · 𝐴 ) ∈ ℝ ) |
| 25 |
24 11
|
reexpcld |
⊢ ( 𝜑 → ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ∈ ℝ ) |
| 26 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 27 |
4
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 28 |
2
|
nnne0d |
⊢ ( 𝜑 → 𝐾 ≠ 0 ) |
| 29 |
4
|
rpne0d |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 30 |
26 27 28 29
|
mulne0d |
⊢ ( 𝜑 → ( 𝐾 · 𝐴 ) ≠ 0 ) |
| 31 |
26 27
|
mulcld |
⊢ ( 𝜑 → ( 𝐾 · 𝐴 ) ∈ ℂ ) |
| 32 |
|
expne0 |
⊢ ( ( ( 𝐾 · 𝐴 ) ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ≠ 0 ↔ ( 𝐾 · 𝐴 ) ≠ 0 ) ) |
| 33 |
31 1 32
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ≠ 0 ↔ ( 𝐾 · 𝐴 ) ≠ 0 ) ) |
| 34 |
30 33
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ≠ 0 ) |
| 35 |
22 25 34
|
redivcld |
⊢ ( 𝜑 → ( ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ∈ ℝ ) |
| 36 |
3
|
rpred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 37 |
23 36
|
remulcld |
⊢ ( 𝜑 → ( 𝐾 · 𝐷 ) ∈ ℝ ) |
| 38 |
37 11
|
reexpcld |
⊢ ( 𝜑 → ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ∈ ℝ ) |
| 39 |
3
|
rpcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 40 |
3
|
rpne0d |
⊢ ( 𝜑 → 𝐷 ≠ 0 ) |
| 41 |
26 39 28 40
|
mulne0d |
⊢ ( 𝜑 → ( 𝐾 · 𝐷 ) ≠ 0 ) |
| 42 |
26 39
|
mulcld |
⊢ ( 𝜑 → ( 𝐾 · 𝐷 ) ∈ ℂ ) |
| 43 |
|
expne0 |
⊢ ( ( ( 𝐾 · 𝐷 ) ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ≠ 0 ↔ ( 𝐾 · 𝐷 ) ≠ 0 ) ) |
| 44 |
42 1 43
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ≠ 0 ↔ ( 𝐾 · 𝐷 ) ≠ 0 ) ) |
| 45 |
41 44
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ≠ 0 ) |
| 46 |
9 38 45
|
redivcld |
⊢ ( 𝜑 → ( 1 / ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) ∈ ℝ ) |
| 47 |
23 11
|
reexpcld |
⊢ ( 𝜑 → ( 𝐾 ↑ 𝑁 ) ∈ ℝ ) |
| 48 |
47 12
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ∈ ℝ ) |
| 49 |
9 48
|
readdcld |
⊢ ( 𝜑 → ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ∈ ℝ ) |
| 50 |
16 49
|
remulcld |
⊢ ( 𝜑 → ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) ∈ ℝ ) |
| 51 |
50 25 34
|
redivcld |
⊢ ( 𝜑 → ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ∈ ℝ ) |
| 52 |
9 12
|
readdcld |
⊢ ( 𝜑 → ( 1 + ( 𝐴 ↑ 𝑁 ) ) ∈ ℝ ) |
| 53 |
52 15
|
reexpcld |
⊢ ( 𝜑 → ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ∈ ℝ ) |
| 54 |
16 53
|
remulcld |
⊢ ( 𝜑 → ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) ∈ ℝ ) |
| 55 |
54 25 34
|
redivcld |
⊢ ( 𝜑 → ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ∈ ℝ ) |
| 56 |
49 25 34
|
redivcld |
⊢ ( 𝜑 → ( ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ∈ ℝ ) |
| 57 |
|
exple1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ≤ 1 ) |
| 58 |
10 5 6 11 57
|
syl31anc |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ≤ 1 ) |
| 59 |
9 12
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↔ ( 𝐴 ↑ 𝑁 ) ≤ 1 ) ) |
| 60 |
58 59
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( 1 − ( 𝐴 ↑ 𝑁 ) ) ) |
| 61 |
13 15 60
|
expge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
| 62 |
31 11
|
expcld |
⊢ ( 𝜑 → ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ∈ ℂ ) |
| 63 |
62 34
|
dividd |
⊢ ( 𝜑 → ( ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) = 1 ) |
| 64 |
62
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) = ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) |
| 65 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 66 |
|
0le1 |
⊢ 0 ≤ 1 |
| 67 |
66
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 68 |
65 9 25 67
|
leadd1dd |
⊢ ( 𝜑 → ( 0 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ≤ ( 1 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) |
| 69 |
64 68
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ≤ ( 1 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) |
| 70 |
9 25
|
readdcld |
⊢ ( 𝜑 → ( 1 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ∈ ℝ ) |
| 71 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 72 |
2
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝐾 ) |
| 73 |
4
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐴 ) |
| 74 |
23 10 72 73
|
mulgt0d |
⊢ ( 𝜑 → 0 < ( 𝐾 · 𝐴 ) ) |
| 75 |
|
expgt0 |
⊢ ( ( ( 𝐾 · 𝐴 ) ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < ( 𝐾 · 𝐴 ) ) → 0 < ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) |
| 76 |
24 71 74 75
|
syl3anc |
⊢ ( 𝜑 → 0 < ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) |
| 77 |
|
lediv1 |
⊢ ( ( ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ∈ ℝ ∧ ( 1 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ∈ ℝ ∧ ( ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ∈ ℝ ∧ 0 < ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) → ( ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ≤ ( 1 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ↔ ( ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ≤ ( ( 1 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) ) |
| 78 |
25 70 25 76 77
|
syl112anc |
⊢ ( 𝜑 → ( ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ≤ ( 1 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ↔ ( ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ≤ ( ( 1 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) ) |
| 79 |
69 78
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ≤ ( ( 1 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) |
| 80 |
63 79
|
eqbrtrrd |
⊢ ( 𝜑 → 1 ≤ ( ( 1 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) |
| 81 |
26 27 11
|
mulexpd |
⊢ ( 𝜑 → ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) = ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| 82 |
81
|
oveq2d |
⊢ ( 𝜑 → ( 1 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) = ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 83 |
82
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 + ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) = ( ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) |
| 84 |
80 83
|
breqtrd |
⊢ ( 𝜑 → 1 ≤ ( ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) |
| 85 |
16 56 61 84
|
lemulge11d |
⊢ ( 𝜑 → ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ≤ ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) ) |
| 86 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 87 |
27 11
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 88 |
86 87
|
subcld |
⊢ ( 𝜑 → ( 1 − ( 𝐴 ↑ 𝑁 ) ) ∈ ℂ ) |
| 89 |
88 15
|
expcld |
⊢ ( 𝜑 → ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ∈ ℂ ) |
| 90 |
26 11
|
expcld |
⊢ ( 𝜑 → ( 𝐾 ↑ 𝑁 ) ∈ ℂ ) |
| 91 |
90 87
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ∈ ℂ ) |
| 92 |
86 91
|
addcld |
⊢ ( 𝜑 → ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ∈ ℂ ) |
| 93 |
89 92 62 34
|
divassd |
⊢ ( 𝜑 → ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) = ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) ) |
| 94 |
85 93
|
breqtrrd |
⊢ ( 𝜑 → ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ≤ ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) |
| 95 |
90 87
|
mulcomd |
⊢ ( 𝜑 → ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐾 ↑ 𝑁 ) ) ) |
| 96 |
95
|
oveq2d |
⊢ ( 𝜑 → ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) = ( 1 + ( ( 𝐴 ↑ 𝑁 ) · ( 𝐾 ↑ 𝑁 ) ) ) ) |
| 97 |
9
|
renegcld |
⊢ ( 𝜑 → - 1 ∈ ℝ ) |
| 98 |
|
le0neg2 |
⊢ ( 1 ∈ ℝ → ( 0 ≤ 1 ↔ - 1 ≤ 0 ) ) |
| 99 |
8 98
|
ax-mp |
⊢ ( 0 ≤ 1 ↔ - 1 ≤ 0 ) |
| 100 |
66 99
|
mpbi |
⊢ - 1 ≤ 0 |
| 101 |
100
|
a1i |
⊢ ( 𝜑 → - 1 ≤ 0 ) |
| 102 |
10 11 5
|
expge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 ↑ 𝑁 ) ) |
| 103 |
97 65 12 101 102
|
letrd |
⊢ ( 𝜑 → - 1 ≤ ( 𝐴 ↑ 𝑁 ) ) |
| 104 |
|
bernneq |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℝ ∧ ( 𝐾 ↑ 𝑁 ) ∈ ℕ0 ∧ - 1 ≤ ( 𝐴 ↑ 𝑁 ) ) → ( 1 + ( ( 𝐴 ↑ 𝑁 ) · ( 𝐾 ↑ 𝑁 ) ) ) ≤ ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
| 105 |
12 15 103 104
|
syl3anc |
⊢ ( 𝜑 → ( 1 + ( ( 𝐴 ↑ 𝑁 ) · ( 𝐾 ↑ 𝑁 ) ) ) ≤ ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
| 106 |
96 105
|
eqbrtrd |
⊢ ( 𝜑 → ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ≤ ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
| 107 |
49 53 16 61 106
|
lemul2ad |
⊢ ( 𝜑 → ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) ≤ ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) ) |
| 108 |
|
lediv1 |
⊢ ( ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) ∈ ℝ ∧ ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) ∈ ℝ ∧ ( ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ∈ ℝ ∧ 0 < ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) → ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) ≤ ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) ↔ ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ≤ ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) ) |
| 109 |
50 54 25 76 108
|
syl112anc |
⊢ ( 𝜑 → ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) ≤ ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) ↔ ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ≤ ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) ) |
| 110 |
107 109
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( 1 + ( ( 𝐾 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ≤ ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) |
| 111 |
16 51 55 94 110
|
letrd |
⊢ ( 𝜑 → ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ≤ ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) |
| 112 |
86 87
|
addcld |
⊢ ( 𝜑 → ( 1 + ( 𝐴 ↑ 𝑁 ) ) ∈ ℂ ) |
| 113 |
88 112
|
mulcomd |
⊢ ( 𝜑 → ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) · ( 1 + ( 𝐴 ↑ 𝑁 ) ) ) = ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) · ( 1 − ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 114 |
113
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) · ( 1 + ( 𝐴 ↑ 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) = ( ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) · ( 1 − ( 𝐴 ↑ 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
| 115 |
88 112 15
|
mulexpd |
⊢ ( 𝜑 → ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) · ( 1 + ( 𝐴 ↑ 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) = ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) ) |
| 116 |
|
subsq |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) → ( ( 1 ↑ 2 ) − ( ( 𝐴 ↑ 𝑁 ) ↑ 2 ) ) = ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) · ( 1 − ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 117 |
86 87 116
|
syl2anc |
⊢ ( 𝜑 → ( ( 1 ↑ 2 ) − ( ( 𝐴 ↑ 𝑁 ) ↑ 2 ) ) = ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) · ( 1 − ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 118 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 119 |
118
|
a1i |
⊢ ( 𝜑 → ( 1 ↑ 2 ) = 1 ) |
| 120 |
27 18 11
|
expmuld |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑁 · 2 ) ) = ( ( 𝐴 ↑ 𝑁 ) ↑ 2 ) ) |
| 121 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 122 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 123 |
121 122
|
mulcomd |
⊢ ( 𝜑 → ( 𝑁 · 2 ) = ( 2 · 𝑁 ) ) |
| 124 |
123
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑁 · 2 ) ) = ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) |
| 125 |
120 124
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) ↑ 2 ) = ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) |
| 126 |
119 125
|
oveq12d |
⊢ ( 𝜑 → ( ( 1 ↑ 2 ) − ( ( 𝐴 ↑ 𝑁 ) ↑ 2 ) ) = ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ) |
| 127 |
117 126
|
eqtr3d |
⊢ ( 𝜑 → ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) · ( 1 − ( 𝐴 ↑ 𝑁 ) ) ) = ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ) |
| 128 |
127
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) · ( 1 − ( 𝐴 ↑ 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) = ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
| 129 |
114 115 128
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) = ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
| 130 |
129
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) · ( ( 1 + ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) = ( ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) |
| 131 |
111 130
|
breqtrd |
⊢ ( 𝜑 → ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ≤ ( ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) |
| 132 |
22 9
|
jca |
⊢ ( 𝜑 → ( ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) ) |
| 133 |
|
exple1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∧ ( 2 · 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 2 · 𝑁 ) ) ≤ 1 ) |
| 134 |
10 5 6 19 133
|
syl31anc |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 2 · 𝑁 ) ) ≤ 1 ) |
| 135 |
9 20
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↔ ( 𝐴 ↑ ( 2 · 𝑁 ) ) ≤ 1 ) ) |
| 136 |
134 135
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ) |
| 137 |
21 15 136
|
expge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
| 138 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 139 |
10 19 5
|
expge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) |
| 140 |
138 139
|
eqbrtrid |
⊢ ( 𝜑 → ( 1 − 1 ) ≤ ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) |
| 141 |
9 9 20 140
|
subled |
⊢ ( 𝜑 → ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ≤ 1 ) |
| 142 |
|
exple1 |
⊢ ( ( ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ∈ ℝ ∧ 0 ≤ ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ∧ ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ≤ 1 ) ∧ ( 𝐾 ↑ 𝑁 ) ∈ ℕ0 ) → ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ≤ 1 ) |
| 143 |
21 136 141 15 142
|
syl31anc |
⊢ ( 𝜑 → ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ≤ 1 ) |
| 144 |
132 137 143
|
jca32 |
⊢ ( 𝜑 → ( ( ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( 0 ≤ ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ∧ ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ≤ 1 ) ) ) |
| 145 |
38 25
|
jca |
⊢ ( 𝜑 → ( ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ∈ ℝ ∧ ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ∈ ℝ ) ) |
| 146 |
3
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐷 ) |
| 147 |
23 36 72 146
|
mulgt0d |
⊢ ( 𝜑 → 0 < ( 𝐾 · 𝐷 ) ) |
| 148 |
|
expgt0 |
⊢ ( ( ( 𝐾 · 𝐷 ) ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < ( 𝐾 · 𝐷 ) ) → 0 < ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) |
| 149 |
37 71 147 148
|
syl3anc |
⊢ ( 𝜑 → 0 < ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) |
| 150 |
65 23 72
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐾 ) |
| 151 |
65 36 146
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐷 ) |
| 152 |
23 36 150 151
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐾 · 𝐷 ) ) |
| 153 |
36 10 23 150 7
|
lemul2ad |
⊢ ( 𝜑 → ( 𝐾 · 𝐷 ) ≤ ( 𝐾 · 𝐴 ) ) |
| 154 |
|
leexp1a |
⊢ ( ( ( ( 𝐾 · 𝐷 ) ∈ ℝ ∧ ( 𝐾 · 𝐴 ) ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ ( 0 ≤ ( 𝐾 · 𝐷 ) ∧ ( 𝐾 · 𝐷 ) ≤ ( 𝐾 · 𝐴 ) ) ) → ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ≤ ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) |
| 155 |
37 24 11 152 153 154
|
syl32anc |
⊢ ( 𝜑 → ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ≤ ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) |
| 156 |
149 155
|
jca |
⊢ ( 𝜑 → ( 0 < ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ∧ ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ≤ ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) |
| 157 |
|
lediv12a |
⊢ ( ( ( ( ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( 0 ≤ ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ∧ ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ≤ 1 ) ) ∧ ( ( ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ∈ ℝ ∧ ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ∈ ℝ ) ∧ ( 0 < ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ∧ ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ≤ ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ) ) → ( ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ≤ ( 1 / ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) ) |
| 158 |
144 145 156 157
|
syl12anc |
⊢ ( 𝜑 → ( ( ( 1 − ( 𝐴 ↑ ( 2 · 𝑁 ) ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) / ( ( 𝐾 · 𝐴 ) ↑ 𝑁 ) ) ≤ ( 1 / ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) ) |
| 159 |
16 35 46 131 158
|
letrd |
⊢ ( 𝜑 → ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ≤ ( 1 / ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) ) |