| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem2.1 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 2 |  | stoweidlem2.2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 3 |  | stoweidlem2.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 4 |  | stoweidlem2.4 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 5 |  | stoweidlem2.5 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 6 |  | stoweidlem2.6 | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 8 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝐸  ∈  ℝ ) | 
						
							| 9 |  | eqidd | ⊢ ( 𝑠  =  𝑡  →  𝐸  =  𝐸 ) | 
						
							| 10 | 9 | cbvmptv | ⊢ ( 𝑠  ∈  𝑇  ↦  𝐸 )  =  ( 𝑡  ∈  𝑇  ↦  𝐸 ) | 
						
							| 11 | 10 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  𝐸  ∈  ℝ )  →  ( ( 𝑠  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  =  𝐸 ) | 
						
							| 12 | 7 8 11 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑠  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  =  𝐸 ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝐸  =  ( ( 𝑠  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐸  ·  ( 𝐹 ‘ 𝑡 ) )  =  ( ( ( 𝑠  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 15 | 1 14 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( 𝐹 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑠  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) ) | 
						
							| 16 |  | id | ⊢ ( 𝑥  =  𝐸  →  𝑥  =  𝐸 ) | 
						
							| 17 | 16 | mpteq2dv | ⊢ ( 𝑥  =  𝐸  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  =  ( 𝑡  ∈  𝑇  ↦  𝐸 ) ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑥  =  𝐸  →  ( ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 ) ) | 
						
							| 19 | 18 | imbi2d | ⊢ ( 𝑥  =  𝐸  →  ( ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 )  ↔  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 ) ) ) | 
						
							| 20 | 3 | expcom | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) ) | 
						
							| 21 | 19 20 | vtoclga | ⊢ ( 𝐸  ∈  ℝ  →  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 ) ) | 
						
							| 22 | 5 21 | mpcom | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 ) | 
						
							| 23 | 10 22 | eqeltrid | ⊢ ( 𝜑  →  ( 𝑠  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 ) | 
						
							| 24 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑠  ∈  𝑇  ↦  𝐸 )  →  ( 𝑓 ‘ 𝑡 )  =  ( ( 𝑠  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( 𝑓  =  ( 𝑠  ∈  𝑇  ↦  𝐸 )  →  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) )  =  ( ( ( 𝑠  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 26 | 25 | mpteq2dv | ⊢ ( 𝑓  =  ( 𝑠  ∈  𝑇  ↦  𝐸 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑠  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝑓  =  ( 𝑠  ∈  𝑇  ↦  𝐸 )  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑠  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 28 | 27 | imbi2d | ⊢ ( 𝑓  =  ( 𝑠  ∈  𝑇  ↦  𝐸 )  →  ( ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑠  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 29 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝐹  ∈  𝐴 ) | 
						
							| 30 |  | fveq1 | ⊢ ( 𝑔  =  𝐹  →  ( 𝑔 ‘ 𝑡 )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( 𝑔  =  𝐹  →  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 32 | 31 | mpteq2dv | ⊢ ( 𝑔  =  𝐹  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) ) | 
						
							| 33 | 32 | eleq1d | ⊢ ( 𝑔  =  𝐹  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 34 | 33 | imbi2d | ⊢ ( 𝑔  =  𝐹  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 35 | 2 | 3comr | ⊢ ( ( 𝑔  ∈  𝐴  ∧  𝜑  ∧  𝑓  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 36 | 35 | 3expib | ⊢ ( 𝑔  ∈  𝐴  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 37 | 34 36 | vtoclga | ⊢ ( 𝐹  ∈  𝐴  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 38 | 29 37 | mpcom | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 39 | 38 | expcom | ⊢ ( 𝑓  ∈  𝐴  →  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 40 | 28 39 | vtoclga | ⊢ ( ( 𝑠  ∈  𝑇  ↦  𝐸 )  ∈  𝐴  →  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑠  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 41 | 23 40 | mpcom | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑠  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 42 | 15 41 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) |