Metamath Proof Explorer


Theorem stoweidlem2

Description: lemma for stoweid : here we prove that the subalgebra of continuous functions, which contains constant functions, is closed under scaling. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem2.1 t φ
stoweidlem2.2 φ f A g A t T f t g t A
stoweidlem2.3 φ x t T x A
stoweidlem2.4 φ f A f : T
stoweidlem2.5 φ E
stoweidlem2.6 φ F A
Assertion stoweidlem2 φ t T E F t A

Proof

Step Hyp Ref Expression
1 stoweidlem2.1 t φ
2 stoweidlem2.2 φ f A g A t T f t g t A
3 stoweidlem2.3 φ x t T x A
4 stoweidlem2.4 φ f A f : T
5 stoweidlem2.5 φ E
6 stoweidlem2.6 φ F A
7 simpr φ t T t T
8 5 adantr φ t T E
9 eqidd s = t E = E
10 9 cbvmptv s T E = t T E
11 10 fvmpt2 t T E s T E t = E
12 7 8 11 syl2anc φ t T s T E t = E
13 12 eqcomd φ t T E = s T E t
14 13 oveq1d φ t T E F t = s T E t F t
15 1 14 mpteq2da φ t T E F t = t T s T E t F t
16 id x = E x = E
17 16 mpteq2dv x = E t T x = t T E
18 17 eleq1d x = E t T x A t T E A
19 18 imbi2d x = E φ t T x A φ t T E A
20 3 expcom x φ t T x A
21 19 20 vtoclga E φ t T E A
22 5 21 mpcom φ t T E A
23 10 22 eqeltrid φ s T E A
24 fveq1 f = s T E f t = s T E t
25 24 oveq1d f = s T E f t F t = s T E t F t
26 25 mpteq2dv f = s T E t T f t F t = t T s T E t F t
27 26 eleq1d f = s T E t T f t F t A t T s T E t F t A
28 27 imbi2d f = s T E φ t T f t F t A φ t T s T E t F t A
29 6 adantr φ f A F A
30 fveq1 g = F g t = F t
31 30 oveq2d g = F f t g t = f t F t
32 31 mpteq2dv g = F t T f t g t = t T f t F t
33 32 eleq1d g = F t T f t g t A t T f t F t A
34 33 imbi2d g = F φ f A t T f t g t A φ f A t T f t F t A
35 2 3comr g A φ f A t T f t g t A
36 35 3expib g A φ f A t T f t g t A
37 34 36 vtoclga F A φ f A t T f t F t A
38 29 37 mpcom φ f A t T f t F t A
39 38 expcom f A φ t T f t F t A
40 28 39 vtoclga s T E A φ t T s T E t F t A
41 23 40 mpcom φ t T s T E t F t A
42 15 41 eqeltrd φ t T E F t A