| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem3.1 | ⊢ Ⅎ 𝑖 𝐹 | 
						
							| 2 |  | stoweidlem3.2 | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 3 |  | stoweidlem3.3 | ⊢ 𝑋  =  seq 1 (  ·  ,  𝐹 ) | 
						
							| 4 |  | stoweidlem3.4 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 5 |  | stoweidlem3.5 | ⊢ ( 𝜑  →  𝐹 : ( 1 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 6 |  | stoweidlem3.6 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐴  <  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 7 |  | stoweidlem3.7 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 8 |  | elnnuz | ⊢ ( 𝑀  ∈  ℕ  ↔  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 9 | 4 8 | sylib | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 10 |  | eluzfz2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 1 )  →  𝑀  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑛  =  1  →  ( 𝐴 ↑ 𝑛 )  =  ( 𝐴 ↑ 1 ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑛  =  1  →  ( 𝑋 ‘ 𝑛 )  =  ( 𝑋 ‘ 1 ) ) | 
						
							| 14 | 12 13 | breq12d | ⊢ ( 𝑛  =  1  →  ( ( 𝐴 ↑ 𝑛 )  <  ( 𝑋 ‘ 𝑛 )  ↔  ( 𝐴 ↑ 1 )  <  ( 𝑋 ‘ 1 ) ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( 𝑛  =  1  →  ( ( 𝜑  →  ( 𝐴 ↑ 𝑛 )  <  ( 𝑋 ‘ 𝑛 ) )  ↔  ( 𝜑  →  ( 𝐴 ↑ 1 )  <  ( 𝑋 ‘ 1 ) ) ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐴 ↑ 𝑛 )  =  ( 𝐴 ↑ 𝑚 ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑋 ‘ 𝑛 )  =  ( 𝑋 ‘ 𝑚 ) ) | 
						
							| 18 | 16 17 | breq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐴 ↑ 𝑛 )  <  ( 𝑋 ‘ 𝑛 )  ↔  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) ) ) | 
						
							| 19 | 18 | imbi2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝜑  →  ( 𝐴 ↑ 𝑛 )  <  ( 𝑋 ‘ 𝑛 ) )  ↔  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) ) ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 𝐴 ↑ 𝑛 )  =  ( 𝐴 ↑ ( 𝑚  +  1 ) ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 𝑋 ‘ 𝑛 )  =  ( 𝑋 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 22 | 20 21 | breq12d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝐴 ↑ 𝑛 )  <  ( 𝑋 ‘ 𝑛 )  ↔  ( 𝐴 ↑ ( 𝑚  +  1 ) )  <  ( 𝑋 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 23 | 22 | imbi2d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝜑  →  ( 𝐴 ↑ 𝑛 )  <  ( 𝑋 ‘ 𝑛 ) )  ↔  ( 𝜑  →  ( 𝐴 ↑ ( 𝑚  +  1 ) )  <  ( 𝑋 ‘ ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑛  =  𝑀  →  ( 𝐴 ↑ 𝑛 )  =  ( 𝐴 ↑ 𝑀 ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑋 ‘ 𝑛 )  =  ( 𝑋 ‘ 𝑀 ) ) | 
						
							| 26 | 24 25 | breq12d | ⊢ ( 𝑛  =  𝑀  →  ( ( 𝐴 ↑ 𝑛 )  <  ( 𝑋 ‘ 𝑛 )  ↔  ( 𝐴 ↑ 𝑀 )  <  ( 𝑋 ‘ 𝑀 ) ) ) | 
						
							| 27 | 26 | imbi2d | ⊢ ( 𝑛  =  𝑀  →  ( ( 𝜑  →  ( 𝐴 ↑ 𝑛 )  <  ( 𝑋 ‘ 𝑛 ) )  ↔  ( 𝜑  →  ( 𝐴 ↑ 𝑀 )  <  ( 𝑋 ‘ 𝑀 ) ) ) ) | 
						
							| 28 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 29 | 4 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 30 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  1  ≤  1 ) | 
						
							| 32 | 4 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑀 ) | 
						
							| 33 | 28 29 28 31 32 | elfzd | ⊢ ( 𝜑  →  1  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 34 | 33 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  1  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 35 |  | nfv | ⊢ Ⅎ 𝑖 1  ∈  ( 1 ... 𝑀 ) | 
						
							| 36 | 2 35 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  1  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 37 |  | nfcv | ⊢ Ⅎ 𝑖 𝐴 | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑖  < | 
						
							| 39 |  | nfcv | ⊢ Ⅎ 𝑖 1 | 
						
							| 40 | 1 39 | nffv | ⊢ Ⅎ 𝑖 ( 𝐹 ‘ 1 ) | 
						
							| 41 | 37 38 40 | nfbr | ⊢ Ⅎ 𝑖 𝐴  <  ( 𝐹 ‘ 1 ) | 
						
							| 42 | 36 41 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  1  ∈  ( 1 ... 𝑀 ) )  →  𝐴  <  ( 𝐹 ‘ 1 ) ) | 
						
							| 43 |  | eleq1 | ⊢ ( 𝑖  =  1  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↔  1  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 44 | 43 | anbi2d | ⊢ ( 𝑖  =  1  →  ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ↔  ( 𝜑  ∧  1  ∈  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 45 |  | fveq2 | ⊢ ( 𝑖  =  1  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 46 | 45 | breq2d | ⊢ ( 𝑖  =  1  →  ( 𝐴  <  ( 𝐹 ‘ 𝑖 )  ↔  𝐴  <  ( 𝐹 ‘ 1 ) ) ) | 
						
							| 47 | 44 46 | imbi12d | ⊢ ( 𝑖  =  1  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐴  <  ( 𝐹 ‘ 𝑖 ) )  ↔  ( ( 𝜑  ∧  1  ∈  ( 1 ... 𝑀 ) )  →  𝐴  <  ( 𝐹 ‘ 1 ) ) ) ) | 
						
							| 48 | 42 47 6 | vtoclg1f | ⊢ ( 1  ∈  ( 1 ... 𝑀 )  →  ( ( 𝜑  ∧  1  ∈  ( 1 ... 𝑀 ) )  →  𝐴  <  ( 𝐹 ‘ 1 ) ) ) | 
						
							| 49 | 33 34 48 | sylc | ⊢ ( 𝜑  →  𝐴  <  ( 𝐹 ‘ 1 ) ) | 
						
							| 50 | 7 | rpcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 51 | 50 | exp1d | ⊢ ( 𝜑  →  ( 𝐴 ↑ 1 )  =  𝐴 ) | 
						
							| 52 | 3 | fveq1i | ⊢ ( 𝑋 ‘ 1 )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) | 
						
							| 53 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 54 |  | seq1 | ⊢ ( 1  ∈  ℤ  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 55 | 53 54 | ax-mp | ⊢ ( seq 1 (  ·  ,  𝐹 ) ‘ 1 )  =  ( 𝐹 ‘ 1 ) | 
						
							| 56 | 52 55 | eqtri | ⊢ ( 𝑋 ‘ 1 )  =  ( 𝐹 ‘ 1 ) | 
						
							| 57 | 56 | a1i | ⊢ ( 𝜑  →  ( 𝑋 ‘ 1 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 58 | 49 51 57 | 3brtr4d | ⊢ ( 𝜑  →  ( 𝐴 ↑ 1 )  <  ( 𝑋 ‘ 1 ) ) | 
						
							| 59 | 58 | a1i | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝜑  →  ( 𝐴 ↑ 1 )  <  ( 𝑋 ‘ 1 ) ) ) | 
						
							| 60 | 7 | 3ad2ant3 | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 61 | 60 | rpred | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  𝐴  ∈  ℝ ) | 
						
							| 62 |  | elfzouz | ⊢ ( 𝑚  ∈  ( 1 ..^ 𝑀 )  →  𝑚  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 63 |  | elnnuz | ⊢ ( 𝑚  ∈  ℕ  ↔  𝑚  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 64 |  | nnnn0 | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℕ0 ) | 
						
							| 65 | 63 64 | sylbir | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 1 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 66 | 62 65 | syl | ⊢ ( 𝑚  ∈  ( 1 ..^ 𝑀 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 67 | 66 | 3ad2ant1 | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 68 | 61 67 | reexpcld | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝐴 ↑ 𝑚 )  ∈  ℝ ) | 
						
							| 69 | 3 | fveq1i | ⊢ ( 𝑋 ‘ 𝑚 )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑚 ) | 
						
							| 70 | 62 | adantr | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  →  𝑚  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 71 |  | nfv | ⊢ Ⅎ 𝑖 𝑚  ∈  ( 1 ..^ 𝑀 ) | 
						
							| 72 | 71 2 | nfan | ⊢ Ⅎ 𝑖 ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 ) | 
						
							| 73 |  | nfv | ⊢ Ⅎ 𝑖 𝑎  ∈  ( 1 ... 𝑚 ) | 
						
							| 74 | 72 73 | nfan | ⊢ Ⅎ 𝑖 ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑎  ∈  ( 1 ... 𝑚 ) ) | 
						
							| 75 |  | nfcv | ⊢ Ⅎ 𝑖 𝑎 | 
						
							| 76 | 1 75 | nffv | ⊢ Ⅎ 𝑖 ( 𝐹 ‘ 𝑎 ) | 
						
							| 77 | 76 | nfel1 | ⊢ Ⅎ 𝑖 ( 𝐹 ‘ 𝑎 )  ∈  ℝ | 
						
							| 78 | 74 77 | nfim | ⊢ Ⅎ 𝑖 ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑎  ∈  ( 1 ... 𝑚 ) )  →  ( 𝐹 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 79 |  | eleq1 | ⊢ ( 𝑖  =  𝑎  →  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↔  𝑎  ∈  ( 1 ... 𝑚 ) ) ) | 
						
							| 80 | 79 | anbi2d | ⊢ ( 𝑖  =  𝑎  →  ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  ↔  ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑎  ∈  ( 1 ... 𝑚 ) ) ) ) | 
						
							| 81 |  | fveq2 | ⊢ ( 𝑖  =  𝑎  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 82 | 81 | eleq1d | ⊢ ( 𝑖  =  𝑎  →  ( ( 𝐹 ‘ 𝑖 )  ∈  ℝ  ↔  ( 𝐹 ‘ 𝑎 )  ∈  ℝ ) ) | 
						
							| 83 | 80 82 | imbi12d | ⊢ ( 𝑖  =  𝑎  →  ( ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℝ )  ↔  ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑎  ∈  ( 1 ... 𝑚 ) )  →  ( 𝐹 ‘ 𝑎 )  ∈  ℝ ) ) ) | 
						
							| 84 | 5 | ad2antlr | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝐹 : ( 1 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 85 |  | 1zzd | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  1  ∈  ℤ ) | 
						
							| 86 | 29 | ad2antlr | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 87 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 1 ... 𝑚 )  →  𝑖  ∈  ℤ ) | 
						
							| 88 | 87 | adantl | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 89 |  | elfzle1 | ⊢ ( 𝑖  ∈  ( 1 ... 𝑚 )  →  1  ≤  𝑖 ) | 
						
							| 90 | 89 | adantl | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  1  ≤  𝑖 ) | 
						
							| 91 | 87 | zred | ⊢ ( 𝑖  ∈  ( 1 ... 𝑚 )  →  𝑖  ∈  ℝ ) | 
						
							| 92 | 91 | adantl | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 93 |  | elfzoelz | ⊢ ( 𝑚  ∈  ( 1 ..^ 𝑀 )  →  𝑚  ∈  ℤ ) | 
						
							| 94 | 93 | zred | ⊢ ( 𝑚  ∈  ( 1 ..^ 𝑀 )  →  𝑚  ∈  ℝ ) | 
						
							| 95 | 94 | ad2antrr | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝑚  ∈  ℝ ) | 
						
							| 96 | 4 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 97 | 96 | ad2antlr | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 98 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( 1 ... 𝑚 )  →  𝑖  ≤  𝑚 ) | 
						
							| 99 | 98 | adantl | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝑖  ≤  𝑚 ) | 
						
							| 100 |  | elfzoel2 | ⊢ ( 𝑚  ∈  ( 1 ..^ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 101 | 100 | zred | ⊢ ( 𝑚  ∈  ( 1 ..^ 𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 102 |  | elfzolt2 | ⊢ ( 𝑚  ∈  ( 1 ..^ 𝑀 )  →  𝑚  <  𝑀 ) | 
						
							| 103 | 94 101 102 | ltled | ⊢ ( 𝑚  ∈  ( 1 ..^ 𝑀 )  →  𝑚  ≤  𝑀 ) | 
						
							| 104 | 103 | ad2antrr | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝑚  ≤  𝑀 ) | 
						
							| 105 | 92 95 97 99 104 | letrd | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝑖  ≤  𝑀 ) | 
						
							| 106 | 85 86 88 90 105 | elfzd | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝑖  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 107 | 84 106 | ffvelcdmd | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 108 | 78 83 107 | chvarfv | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  𝑎  ∈  ( 1 ... 𝑚 ) )  →  ( 𝐹 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 109 |  | remulcl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑗  ∈  ℝ )  →  ( 𝑎  ·  𝑗 )  ∈  ℝ ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  ∧  ( 𝑎  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  →  ( 𝑎  ·  𝑗 )  ∈  ℝ ) | 
						
							| 111 | 70 108 110 | seqcl | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 112 | 69 111 | eqeltrid | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  →  ( 𝑋 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 113 | 112 | 3adant2 | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝑋 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 114 | 5 | 3ad2ant3 | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  𝐹 : ( 1 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 115 |  | fzofzp1 | ⊢ ( 𝑚  ∈  ( 1 ..^ 𝑀 )  →  ( 𝑚  +  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 116 | 115 | 3ad2ant1 | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝑚  +  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 117 | 114 116 | ffvelcdmd | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝐹 ‘ ( 𝑚  +  1 ) )  ∈  ℝ ) | 
						
							| 118 | 7 | rpge0d | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 119 | 118 | 3ad2ant3 | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  0  ≤  𝐴 ) | 
						
							| 120 | 61 67 119 | expge0d | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  0  ≤  ( 𝐴 ↑ 𝑚 ) ) | 
						
							| 121 |  | simp3 | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  𝜑 ) | 
						
							| 122 |  | simp2 | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) ) ) | 
						
							| 123 | 121 122 | mpd | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) ) | 
						
							| 124 | 115 | adantr | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  →  ( 𝑚  +  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 125 |  | simpr | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  →  𝜑 ) | 
						
							| 126 | 125 124 | jca | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  →  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 127 |  | nfv | ⊢ Ⅎ 𝑖 ( 𝑚  +  1 )  ∈  ( 1 ... 𝑀 ) | 
						
							| 128 | 2 127 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 129 |  | nfcv | ⊢ Ⅎ 𝑖 ( 𝑚  +  1 ) | 
						
							| 130 | 1 129 | nffv | ⊢ Ⅎ 𝑖 ( 𝐹 ‘ ( 𝑚  +  1 ) ) | 
						
							| 131 | 37 38 130 | nfbr | ⊢ Ⅎ 𝑖 𝐴  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) | 
						
							| 132 | 128 131 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... 𝑀 ) )  →  𝐴  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 133 |  | eleq1 | ⊢ ( 𝑖  =  ( 𝑚  +  1 )  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↔  ( 𝑚  +  1 )  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 134 | 133 | anbi2d | ⊢ ( 𝑖  =  ( 𝑚  +  1 )  →  ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ↔  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 135 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑚  +  1 )  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 136 | 135 | breq2d | ⊢ ( 𝑖  =  ( 𝑚  +  1 )  →  ( 𝐴  <  ( 𝐹 ‘ 𝑖 )  ↔  𝐴  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 137 | 134 136 | imbi12d | ⊢ ( 𝑖  =  ( 𝑚  +  1 )  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐴  <  ( 𝐹 ‘ 𝑖 ) )  ↔  ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... 𝑀 ) )  →  𝐴  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 138 | 132 137 6 | vtoclg1f | ⊢ ( ( 𝑚  +  1 )  ∈  ( 1 ... 𝑀 )  →  ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... 𝑀 ) )  →  𝐴  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 139 | 124 126 138 | sylc | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  𝜑 )  →  𝐴  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 140 | 139 | 3adant2 | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  𝐴  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 141 | 68 113 61 117 120 123 119 140 | ltmul12ad | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( ( 𝐴 ↑ 𝑚 )  ·  𝐴 )  <  ( ( 𝑋 ‘ 𝑚 )  ·  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 142 | 50 | 3ad2ant3 | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  𝐴  ∈  ℂ ) | 
						
							| 143 | 142 67 | expp1d | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝐴 ↑ ( 𝑚  +  1 ) )  =  ( ( 𝐴 ↑ 𝑚 )  ·  𝐴 ) ) | 
						
							| 144 | 3 | fveq1i | ⊢ ( 𝑋 ‘ ( 𝑚  +  1 ) )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑚  +  1 ) ) | 
						
							| 145 | 144 | a1i | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝑋 ‘ ( 𝑚  +  1 ) )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 146 | 62 | 3ad2ant1 | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  𝑚  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 147 |  | seqp1 | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 1 )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑚  +  1 ) )  =  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑚 )  ·  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 148 | 146 147 | syl | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑚  +  1 ) )  =  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑚 )  ·  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 149 | 69 | a1i | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝑋 ‘ 𝑚 )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑚 ) ) | 
						
							| 150 | 149 | eqcomd | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑚 )  =  ( 𝑋 ‘ 𝑚 ) ) | 
						
							| 151 | 150 | oveq1d | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑚 )  ·  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  =  ( ( 𝑋 ‘ 𝑚 )  ·  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 152 | 145 148 151 | 3eqtrd | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝑋 ‘ ( 𝑚  +  1 ) )  =  ( ( 𝑋 ‘ 𝑚 )  ·  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 153 | 141 143 152 | 3brtr4d | ⊢ ( ( 𝑚  ∈  ( 1 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝐴 ↑ ( 𝑚  +  1 ) )  <  ( 𝑋 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 154 | 153 | 3exp | ⊢ ( 𝑚  ∈  ( 1 ..^ 𝑀 )  →  ( ( 𝜑  →  ( 𝐴 ↑ 𝑚 )  <  ( 𝑋 ‘ 𝑚 ) )  →  ( 𝜑  →  ( 𝐴 ↑ ( 𝑚  +  1 ) )  <  ( 𝑋 ‘ ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 155 | 15 19 23 27 59 154 | fzind2 | ⊢ ( 𝑀  ∈  ( 1 ... 𝑀 )  →  ( 𝜑  →  ( 𝐴 ↑ 𝑀 )  <  ( 𝑋 ‘ 𝑀 ) ) ) | 
						
							| 156 | 11 155 | mpcom | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑀 )  <  ( 𝑋 ‘ 𝑀 ) ) |