Metamath Proof Explorer


Theorem stoweidlem1

Description: Lemma for stoweid . This lemma is used by Lemma 1 in BrosowskiDeutsh p. 90; the key step uses Bernoulli's inequality bernneq . (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem1.1 φN
stoweidlem1.2 φK
stoweidlem1.3 φD+
stoweidlem1.5 φA+
stoweidlem1.6 φ0A
stoweidlem1.7 φA1
stoweidlem1.8 φDA
Assertion stoweidlem1 φ1ANKN1KDN

Proof

Step Hyp Ref Expression
1 stoweidlem1.1 φN
2 stoweidlem1.2 φK
3 stoweidlem1.3 φD+
4 stoweidlem1.5 φA+
5 stoweidlem1.6 φ0A
6 stoweidlem1.7 φA1
7 stoweidlem1.8 φDA
8 1re 1
9 8 a1i φ1
10 4 rpred φA
11 1 nnnn0d φN0
12 10 11 reexpcld φAN
13 9 12 resubcld φ1AN
14 2 nnnn0d φK0
15 14 11 nn0expcld φKN0
16 13 15 reexpcld φ1ANKN
17 2nn0 20
18 17 a1i φ20
19 18 11 nn0mulcld φ2 N0
20 10 19 reexpcld φA2 N
21 9 20 resubcld φ1A2 N
22 21 15 reexpcld φ1A2 NKN
23 2 nnred φK
24 23 10 remulcld φKA
25 24 11 reexpcld φKAN
26 2 nncnd φK
27 4 rpcnd φA
28 2 nnne0d φK0
29 4 rpne0d φA0
30 26 27 28 29 mulne0d φKA0
31 26 27 mulcld φKA
32 expne0 KANKAN0KA0
33 31 1 32 syl2anc φKAN0KA0
34 30 33 mpbird φKAN0
35 22 25 34 redivcld φ1A2 NKNKAN
36 3 rpred φD
37 23 36 remulcld φKD
38 37 11 reexpcld φKDN
39 3 rpcnd φD
40 3 rpne0d φD0
41 26 39 28 40 mulne0d φKD0
42 26 39 mulcld φKD
43 expne0 KDNKDN0KD0
44 42 1 43 syl2anc φKDN0KD0
45 41 44 mpbird φKDN0
46 9 38 45 redivcld φ1KDN
47 23 11 reexpcld φKN
48 47 12 remulcld φKNAN
49 9 48 readdcld φ1+KNAN
50 16 49 remulcld φ1ANKN1+KNAN
51 50 25 34 redivcld φ1ANKN1+KNANKAN
52 9 12 readdcld φ1+AN
53 52 15 reexpcld φ1+ANKN
54 16 53 remulcld φ1ANKN1+ANKN
55 54 25 34 redivcld φ1ANKN1+ANKNKAN
56 49 25 34 redivcld φ1+KNANKAN
57 exple1 A0AA1N0AN1
58 10 5 6 11 57 syl31anc φAN1
59 9 12 subge0d φ01ANAN1
60 58 59 mpbird φ01AN
61 13 15 60 expge0d φ01ANKN
62 31 11 expcld φKAN
63 62 34 dividd φKANKAN=1
64 62 addlidd φ0+KAN=KAN
65 0red φ0
66 0le1 01
67 66 a1i φ01
68 65 9 25 67 leadd1dd φ0+KAN1+KAN
69 64 68 eqbrtrrd φKAN1+KAN
70 9 25 readdcld φ1+KAN
71 1 nnzd φN
72 2 nngt0d φ0<K
73 4 rpgt0d φ0<A
74 23 10 72 73 mulgt0d φ0<KA
75 expgt0 KAN0<KA0<KAN
76 24 71 74 75 syl3anc φ0<KAN
77 lediv1 KAN1+KANKAN0<KANKAN1+KANKANKAN1+KANKAN
78 25 70 25 76 77 syl112anc φKAN1+KANKANKAN1+KANKAN
79 69 78 mpbid φKANKAN1+KANKAN
80 63 79 eqbrtrrd φ11+KANKAN
81 26 27 11 mulexpd φKAN=KNAN
82 81 oveq2d φ1+KAN=1+KNAN
83 82 oveq1d φ1+KANKAN=1+KNANKAN
84 80 83 breqtrd φ11+KNANKAN
85 16 56 61 84 lemulge11d φ1ANKN1ANKN1+KNANKAN
86 1cnd φ1
87 27 11 expcld φAN
88 86 87 subcld φ1AN
89 88 15 expcld φ1ANKN
90 26 11 expcld φKN
91 90 87 mulcld φKNAN
92 86 91 addcld φ1+KNAN
93 89 92 62 34 divassd φ1ANKN1+KNANKAN=1ANKN1+KNANKAN
94 85 93 breqtrrd φ1ANKN1ANKN1+KNANKAN
95 90 87 mulcomd φKNAN=ANKN
96 95 oveq2d φ1+KNAN=1+ANKN
97 9 renegcld φ1
98 le0neg2 10110
99 8 98 ax-mp 0110
100 66 99 mpbi 10
101 100 a1i φ10
102 10 11 5 expge0d φ0AN
103 97 65 12 101 102 letrd φ1AN
104 bernneq ANKN01AN1+ANKN1+ANKN
105 12 15 103 104 syl3anc φ1+ANKN1+ANKN
106 96 105 eqbrtrd φ1+KNAN1+ANKN
107 49 53 16 61 106 lemul2ad φ1ANKN1+KNAN1ANKN1+ANKN
108 lediv1 1ANKN1+KNAN1ANKN1+ANKNKAN0<KAN1ANKN1+KNAN1ANKN1+ANKN1ANKN1+KNANKAN1ANKN1+ANKNKAN
109 50 54 25 76 108 syl112anc φ1ANKN1+KNAN1ANKN1+ANKN1ANKN1+KNANKAN1ANKN1+ANKNKAN
110 107 109 mpbid φ1ANKN1+KNANKAN1ANKN1+ANKNKAN
111 16 51 55 94 110 letrd φ1ANKN1ANKN1+ANKNKAN
112 86 87 addcld φ1+AN
113 88 112 mulcomd φ1AN1+AN=1+AN1AN
114 113 oveq1d φ1AN1+ANKN=1+AN1ANKN
115 88 112 15 mulexpd φ1AN1+ANKN=1ANKN1+ANKN
116 subsq 1AN12AN2=1+AN1AN
117 86 87 116 syl2anc φ12AN2=1+AN1AN
118 sq1 12=1
119 118 a1i φ12=1
120 27 18 11 expmuld φA N2=AN2
121 1 nncnd φN
122 2cnd φ2
123 121 122 mulcomd φ N2=2 N
124 123 oveq2d φA N2=A2 N
125 120 124 eqtr3d φAN2=A2 N
126 119 125 oveq12d φ12AN2=1A2 N
127 117 126 eqtr3d φ1+AN1AN=1A2 N
128 127 oveq1d φ1+AN1ANKN=1A2 NKN
129 114 115 128 3eqtr3d φ1ANKN1+ANKN=1A2 NKN
130 129 oveq1d φ1ANKN1+ANKNKAN=1A2 NKNKAN
131 111 130 breqtrd φ1ANKN1A2 NKNKAN
132 22 9 jca φ1A2 NKN1
133 exple1 A0AA12 N0A2 N1
134 10 5 6 19 133 syl31anc φA2 N1
135 9 20 subge0d φ01A2 NA2 N1
136 134 135 mpbird φ01A2 N
137 21 15 136 expge0d φ01A2 NKN
138 1m1e0 11=0
139 10 19 5 expge0d φ0A2 N
140 138 139 eqbrtrid φ11A2 N
141 9 9 20 140 subled φ1A2 N1
142 exple1 1A2 N01A2 N1A2 N1KN01A2 NKN1
143 21 136 141 15 142 syl31anc φ1A2 NKN1
144 132 137 143 jca32 φ1A2 NKN101A2 NKN1A2 NKN1
145 38 25 jca φKDNKAN
146 3 rpgt0d φ0<D
147 23 36 72 146 mulgt0d φ0<KD
148 expgt0 KDN0<KD0<KDN
149 37 71 147 148 syl3anc φ0<KDN
150 65 23 72 ltled φ0K
151 65 36 146 ltled φ0D
152 23 36 150 151 mulge0d φ0KD
153 36 10 23 150 7 lemul2ad φKDKA
154 leexp1a KDKAN00KDKDKAKDNKAN
155 37 24 11 152 153 154 syl32anc φKDNKAN
156 149 155 jca φ0<KDNKDNKAN
157 lediv12a 1A2 NKN101A2 NKN1A2 NKN1KDNKAN0<KDNKDNKAN1A2 NKNKAN1KDN
158 144 145 156 157 syl12anc φ1A2 NKNKAN1KDN
159 16 35 46 131 158 letrd φ1ANKN1KDN