Metamath Proof Explorer


Theorem stoweidlem1

Description: Lemma for stoweid . This lemma is used by Lemma 1 in BrosowskiDeutsh p. 90; the key step uses Bernoulli's inequality bernneq . (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem1.1 φ N
stoweidlem1.2 φ K
stoweidlem1.3 φ D +
stoweidlem1.5 φ A +
stoweidlem1.6 φ 0 A
stoweidlem1.7 φ A 1
stoweidlem1.8 φ D A
Assertion stoweidlem1 φ 1 A N K N 1 K D N

Proof

Step Hyp Ref Expression
1 stoweidlem1.1 φ N
2 stoweidlem1.2 φ K
3 stoweidlem1.3 φ D +
4 stoweidlem1.5 φ A +
5 stoweidlem1.6 φ 0 A
6 stoweidlem1.7 φ A 1
7 stoweidlem1.8 φ D A
8 1re 1
9 8 a1i φ 1
10 4 rpred φ A
11 1 nnnn0d φ N 0
12 10 11 reexpcld φ A N
13 9 12 resubcld φ 1 A N
14 2 nnnn0d φ K 0
15 14 11 nn0expcld φ K N 0
16 13 15 reexpcld φ 1 A N K N
17 2nn0 2 0
18 17 a1i φ 2 0
19 18 11 nn0mulcld φ 2 N 0
20 10 19 reexpcld φ A 2 N
21 9 20 resubcld φ 1 A 2 N
22 21 15 reexpcld φ 1 A 2 N K N
23 2 nnred φ K
24 23 10 remulcld φ K A
25 24 11 reexpcld φ K A N
26 2 nncnd φ K
27 4 rpcnd φ A
28 2 nnne0d φ K 0
29 4 rpne0d φ A 0
30 26 27 28 29 mulne0d φ K A 0
31 26 27 mulcld φ K A
32 expne0 K A N K A N 0 K A 0
33 31 1 32 syl2anc φ K A N 0 K A 0
34 30 33 mpbird φ K A N 0
35 22 25 34 redivcld φ 1 A 2 N K N K A N
36 3 rpred φ D
37 23 36 remulcld φ K D
38 37 11 reexpcld φ K D N
39 3 rpcnd φ D
40 3 rpne0d φ D 0
41 26 39 28 40 mulne0d φ K D 0
42 26 39 mulcld φ K D
43 expne0 K D N K D N 0 K D 0
44 42 1 43 syl2anc φ K D N 0 K D 0
45 41 44 mpbird φ K D N 0
46 9 38 45 redivcld φ 1 K D N
47 23 11 reexpcld φ K N
48 47 12 remulcld φ K N A N
49 9 48 readdcld φ 1 + K N A N
50 16 49 remulcld φ 1 A N K N 1 + K N A N
51 50 25 34 redivcld φ 1 A N K N 1 + K N A N K A N
52 9 12 readdcld φ 1 + A N
53 52 15 reexpcld φ 1 + A N K N
54 16 53 remulcld φ 1 A N K N 1 + A N K N
55 54 25 34 redivcld φ 1 A N K N 1 + A N K N K A N
56 49 25 34 redivcld φ 1 + K N A N K A N
57 exple1 A 0 A A 1 N 0 A N 1
58 10 5 6 11 57 syl31anc φ A N 1
59 9 12 subge0d φ 0 1 A N A N 1
60 58 59 mpbird φ 0 1 A N
61 13 15 60 expge0d φ 0 1 A N K N
62 31 11 expcld φ K A N
63 62 34 dividd φ K A N K A N = 1
64 62 addid2d φ 0 + K A N = K A N
65 0red φ 0
66 0le1 0 1
67 66 a1i φ 0 1
68 65 9 25 67 leadd1dd φ 0 + K A N 1 + K A N
69 64 68 eqbrtrrd φ K A N 1 + K A N
70 9 25 readdcld φ 1 + K A N
71 1 nnzd φ N
72 2 nngt0d φ 0 < K
73 4 rpgt0d φ 0 < A
74 23 10 72 73 mulgt0d φ 0 < K A
75 expgt0 K A N 0 < K A 0 < K A N
76 24 71 74 75 syl3anc φ 0 < K A N
77 lediv1 K A N 1 + K A N K A N 0 < K A N K A N 1 + K A N K A N K A N 1 + K A N K A N
78 25 70 25 76 77 syl112anc φ K A N 1 + K A N K A N K A N 1 + K A N K A N
79 69 78 mpbid φ K A N K A N 1 + K A N K A N
80 63 79 eqbrtrrd φ 1 1 + K A N K A N
81 26 27 11 mulexpd φ K A N = K N A N
82 81 oveq2d φ 1 + K A N = 1 + K N A N
83 82 oveq1d φ 1 + K A N K A N = 1 + K N A N K A N
84 80 83 breqtrd φ 1 1 + K N A N K A N
85 16 56 61 84 lemulge11d φ 1 A N K N 1 A N K N 1 + K N A N K A N
86 1cnd φ 1
87 27 11 expcld φ A N
88 86 87 subcld φ 1 A N
89 88 15 expcld φ 1 A N K N
90 26 11 expcld φ K N
91 90 87 mulcld φ K N A N
92 86 91 addcld φ 1 + K N A N
93 89 92 62 34 divassd φ 1 A N K N 1 + K N A N K A N = 1 A N K N 1 + K N A N K A N
94 85 93 breqtrrd φ 1 A N K N 1 A N K N 1 + K N A N K A N
95 90 87 mulcomd φ K N A N = A N K N
96 95 oveq2d φ 1 + K N A N = 1 + A N K N
97 9 renegcld φ 1
98 le0neg2 1 0 1 1 0
99 8 98 ax-mp 0 1 1 0
100 66 99 mpbi 1 0
101 100 a1i φ 1 0
102 10 11 5 expge0d φ 0 A N
103 97 65 12 101 102 letrd φ 1 A N
104 bernneq A N K N 0 1 A N 1 + A N K N 1 + A N K N
105 12 15 103 104 syl3anc φ 1 + A N K N 1 + A N K N
106 96 105 eqbrtrd φ 1 + K N A N 1 + A N K N
107 49 53 16 61 106 lemul2ad φ 1 A N K N 1 + K N A N 1 A N K N 1 + A N K N
108 lediv1 1 A N K N 1 + K N A N 1 A N K N 1 + A N K N K A N 0 < K A N 1 A N K N 1 + K N A N 1 A N K N 1 + A N K N 1 A N K N 1 + K N A N K A N 1 A N K N 1 + A N K N K A N
109 50 54 25 76 108 syl112anc φ 1 A N K N 1 + K N A N 1 A N K N 1 + A N K N 1 A N K N 1 + K N A N K A N 1 A N K N 1 + A N K N K A N
110 107 109 mpbid φ 1 A N K N 1 + K N A N K A N 1 A N K N 1 + A N K N K A N
111 16 51 55 94 110 letrd φ 1 A N K N 1 A N K N 1 + A N K N K A N
112 86 87 addcld φ 1 + A N
113 88 112 mulcomd φ 1 A N 1 + A N = 1 + A N 1 A N
114 113 oveq1d φ 1 A N 1 + A N K N = 1 + A N 1 A N K N
115 88 112 15 mulexpd φ 1 A N 1 + A N K N = 1 A N K N 1 + A N K N
116 subsq 1 A N 1 2 A N 2 = 1 + A N 1 A N
117 86 87 116 syl2anc φ 1 2 A N 2 = 1 + A N 1 A N
118 sq1 1 2 = 1
119 118 a1i φ 1 2 = 1
120 27 18 11 expmuld φ A N 2 = A N 2
121 1 nncnd φ N
122 2cnd φ 2
123 121 122 mulcomd φ N 2 = 2 N
124 123 oveq2d φ A N 2 = A 2 N
125 120 124 eqtr3d φ A N 2 = A 2 N
126 119 125 oveq12d φ 1 2 A N 2 = 1 A 2 N
127 117 126 eqtr3d φ 1 + A N 1 A N = 1 A 2 N
128 127 oveq1d φ 1 + A N 1 A N K N = 1 A 2 N K N
129 114 115 128 3eqtr3d φ 1 A N K N 1 + A N K N = 1 A 2 N K N
130 129 oveq1d φ 1 A N K N 1 + A N K N K A N = 1 A 2 N K N K A N
131 111 130 breqtrd φ 1 A N K N 1 A 2 N K N K A N
132 22 9 jca φ 1 A 2 N K N 1
133 exple1 A 0 A A 1 2 N 0 A 2 N 1
134 10 5 6 19 133 syl31anc φ A 2 N 1
135 9 20 subge0d φ 0 1 A 2 N A 2 N 1
136 134 135 mpbird φ 0 1 A 2 N
137 21 15 136 expge0d φ 0 1 A 2 N K N
138 1m1e0 1 1 = 0
139 10 19 5 expge0d φ 0 A 2 N
140 138 139 eqbrtrid φ 1 1 A 2 N
141 9 9 20 140 subled φ 1 A 2 N 1
142 exple1 1 A 2 N 0 1 A 2 N 1 A 2 N 1 K N 0 1 A 2 N K N 1
143 21 136 141 15 142 syl31anc φ 1 A 2 N K N 1
144 132 137 143 jca32 φ 1 A 2 N K N 1 0 1 A 2 N K N 1 A 2 N K N 1
145 38 25 jca φ K D N K A N
146 3 rpgt0d φ 0 < D
147 23 36 72 146 mulgt0d φ 0 < K D
148 expgt0 K D N 0 < K D 0 < K D N
149 37 71 147 148 syl3anc φ 0 < K D N
150 65 23 72 ltled φ 0 K
151 65 36 146 ltled φ 0 D
152 23 36 150 151 mulge0d φ 0 K D
153 36 10 23 150 7 lemul2ad φ K D K A
154 leexp1a K D K A N 0 0 K D K D K A K D N K A N
155 37 24 11 152 153 154 syl32anc φ K D N K A N
156 149 155 jca φ 0 < K D N K D N K A N
157 lediv12a 1 A 2 N K N 1 0 1 A 2 N K N 1 A 2 N K N 1 K D N K A N 0 < K D N K D N K A N 1 A 2 N K N K A N 1 K D N
158 144 145 156 157 syl12anc φ 1 A 2 N K N K A N 1 K D N
159 16 35 46 131 158 letrd φ 1 A N K N 1 K D N