Metamath Proof Explorer


Theorem lemulge11d

Description: Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltp1d.1 φA
divgt0d.2 φB
lemulge11d.3 φ0A
lemulge11d.4 φ1B
Assertion lemulge11d φAAB

Proof

Step Hyp Ref Expression
1 ltp1d.1 φA
2 divgt0d.2 φB
3 lemulge11d.3 φ0A
4 lemulge11d.4 φ1B
5 lemulge11 AB0A1BAAB
6 1 2 3 4 5 syl22anc φAAB