Metamath Proof Explorer


Theorem lemulge11

Description: Multiplication by a number greater than or equal to 1. (Contributed by NM, 17-Dec-2005)

Ref Expression
Assertion lemulge11 AB0A1BAAB

Proof

Step Hyp Ref Expression
1 ax-1rid AA1=A
2 1 ad2antrr AB0A1BA1=A
3 simpll AB0A1BA
4 simprl AB0A1B0A
5 3 4 jca AB0A1BA0A
6 simplr AB0A1BB
7 1re 1
8 0le1 01
9 7 8 pm3.2i 101
10 6 9 jctil AB0A1B101B
11 5 3 10 jca31 AB0A1BA0AA101B
12 leid AAA
13 12 ad2antrr AB0A1BAA
14 simprr AB0A1B1B
15 13 14 jca AB0A1BAA1B
16 lemul12a A0AA101BAA1BA1AB
17 11 15 16 sylc AB0A1BA1AB
18 2 17 eqbrtrrd AB0A1BAAB