| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
1 2
|
breq12d |
|
| 4 |
3
|
imbi2d |
|
| 5 |
|
oveq2 |
|
| 6 |
|
oveq2 |
|
| 7 |
5 6
|
breq12d |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
oveq2 |
|
| 10 |
|
oveq2 |
|
| 11 |
9 10
|
breq12d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
oveq2 |
|
| 14 |
|
oveq2 |
|
| 15 |
13 14
|
breq12d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
recn |
|
| 18 |
|
recn |
|
| 19 |
|
exp0 |
|
| 20 |
19
|
adantr |
|
| 21 |
|
1le1 |
|
| 22 |
20 21
|
eqbrtrdi |
|
| 23 |
|
exp0 |
|
| 24 |
23
|
adantl |
|
| 25 |
22 24
|
breqtrrd |
|
| 26 |
17 18 25
|
syl2an |
|
| 27 |
26
|
adantr |
|
| 28 |
|
reexpcl |
|
| 29 |
28
|
ad4ant14 |
|
| 30 |
|
simplll |
|
| 31 |
|
simpr |
|
| 32 |
|
simplrl |
|
| 33 |
|
expge0 |
|
| 34 |
30 31 32 33
|
syl3anc |
|
| 35 |
|
reexpcl |
|
| 36 |
35
|
ad4ant24 |
|
| 37 |
29 34 36
|
jca31 |
|
| 38 |
|
simpl |
|
| 39 |
|
simpl |
|
| 40 |
38 39
|
anim12i |
|
| 41 |
40
|
adantr |
|
| 42 |
|
simpllr |
|
| 43 |
37 41 42
|
jca32 |
|
| 44 |
43
|
adantr |
|
| 45 |
|
simplrr |
|
| 46 |
45
|
anim1ci |
|
| 47 |
|
lemul12a |
|
| 48 |
44 46 47
|
sylc |
|
| 49 |
|
expp1 |
|
| 50 |
17 49
|
sylan |
|
| 51 |
50
|
ad5ant14 |
|
| 52 |
|
expp1 |
|
| 53 |
18 52
|
sylan |
|
| 54 |
53
|
ad5ant24 |
|
| 55 |
48 51 54
|
3brtr4d |
|
| 56 |
55
|
ex |
|
| 57 |
56
|
expcom |
|
| 58 |
57
|
a2d |
|
| 59 |
4 8 12 16 27 58
|
nn0ind |
|
| 60 |
59
|
exp4c |
|
| 61 |
60
|
com3l |
|
| 62 |
61
|
3imp1 |
|