| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem62.1 | ⊢ Ⅎ 𝑡 𝐹 | 
						
							| 2 |  | stoweidlem62.2 | ⊢ Ⅎ 𝑓 𝜑 | 
						
							| 3 |  | stoweidlem62.3 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 4 |  | stoweidlem62.4 | ⊢ 𝐻  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 5 |  | stoweidlem62.5 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 6 |  | stoweidlem62.6 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 7 |  | stoweidlem62.7 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 8 |  | stoweidlem62.8 | ⊢ 𝐶  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 9 |  | stoweidlem62.9 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐶 ) | 
						
							| 10 |  | stoweidlem62.10 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 11 |  | stoweidlem62.11 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 12 |  | stoweidlem62.12 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 13 |  | stoweidlem62.13 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 14 |  | stoweidlem62.14 | ⊢ ( 𝜑  →  𝐹  ∈  𝐶 ) | 
						
							| 15 |  | stoweidlem62.15 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 16 |  | stoweidlem62.16 | ⊢ ( 𝜑  →  𝑇  ≠  ∅ ) | 
						
							| 17 |  | stoweidlem62.17 | ⊢ ( 𝜑  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 18 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 19 | 4 18 | nfcxfr | ⊢ Ⅎ 𝑡 𝐻 | 
						
							| 20 |  | eleq1w | ⊢ ( 𝑔  =  ℎ  →  ( 𝑔  ∈  𝐴  ↔  ℎ  ∈  𝐴 ) ) | 
						
							| 21 | 20 | 3anbi3d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  ℎ  ∈  𝐴 ) ) ) | 
						
							| 22 |  | fveq1 | ⊢ ( 𝑔  =  ℎ  →  ( 𝑔 ‘ 𝑡 )  =  ( ℎ ‘ 𝑡 ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) )  =  ( ( 𝑓 ‘ 𝑡 )  +  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 24 | 23 | mpteq2dv | ⊢ ( 𝑔  =  ℎ  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( ℎ ‘ 𝑡 ) ) ) ) | 
						
							| 25 | 24 | eleq1d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( ℎ ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 26 | 21 25 | imbi12d | ⊢ ( 𝑔  =  ℎ  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( ℎ ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 27 | 26 10 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( ℎ ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 28 | 22 | oveq2d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( 𝑓 ‘ 𝑡 )  ·  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 29 | 28 | mpteq2dv | ⊢ ( 𝑔  =  ℎ  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( ℎ ‘ 𝑡 ) ) ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( ℎ ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 31 | 21 30 | imbi12d | ⊢ ( 𝑔  =  ℎ  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( ℎ ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 32 | 31 11 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( ℎ ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 33 | 1 | nfrn | ⊢ Ⅎ 𝑡 ran  𝐹 | 
						
							| 34 |  | nfcv | ⊢ Ⅎ 𝑡 ℝ | 
						
							| 35 |  | nfcv | ⊢ Ⅎ 𝑡  < | 
						
							| 36 | 33 34 35 | nfinf | ⊢ Ⅎ 𝑡 inf ( ran  𝐹 ,  ℝ ,   <  ) | 
						
							| 37 |  | eqid | ⊢ ( 𝑇  ×  { - inf ( ran  𝐹 ,  ℝ ,   <  ) } )  =  ( 𝑇  ×  { - inf ( ran  𝐹 ,  ℝ ,   <  ) } ) | 
						
							| 38 |  | cmptop | ⊢ ( 𝐽  ∈  Comp  →  𝐽  ∈  Top ) | 
						
							| 39 | 7 38 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 40 | 14 8 | eleqtrdi | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 41 | 1 3 6 5 7 40 16 | stoweidlem29 | ⊢ ( 𝜑  →  ( inf ( ran  𝐹 ,  ℝ ,   <  )  ∈  ran  𝐹  ∧  inf ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ  ∧  ∀ 𝑡  ∈  𝑇 inf ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 42 | 41 | simp2d | ⊢ ( 𝜑  →  inf ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 43 | 1 36 3 6 37 5 39 8 14 42 | stoweidlem47 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) )  ∈  𝐶 ) | 
						
							| 44 | 4 43 | eqeltrid | ⊢ ( 𝜑  →  𝐻  ∈  𝐶 ) | 
						
							| 45 | 41 | simp3d | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 inf ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 46 | 45 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  inf ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 47 | 5 6 8 14 | fcnre | ⊢ ( 𝜑  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 48 | 47 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 49 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  inf ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 50 | 48 49 | subge0d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) )  ↔  inf ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 51 | 46 50 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 52 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 53 | 48 49 | resubcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) )  ∈  ℝ ) | 
						
							| 54 | 4 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) )  ∈  ℝ )  →  ( 𝐻 ‘ 𝑡 )  =  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 55 | 52 53 54 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 )  =  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 56 | 51 55 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( 𝐻 ‘ 𝑡 ) ) | 
						
							| 57 | 56 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  →  0  ≤  ( 𝐻 ‘ 𝑡 ) ) ) | 
						
							| 58 | 3 57 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 0  ≤  ( 𝐻 ‘ 𝑡 ) ) | 
						
							| 59 | 15 | rphalfcld | ⊢ ( 𝜑  →  ( 𝐸  /  2 )  ∈  ℝ+ ) | 
						
							| 60 | 15 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 61 | 60 | rehalfcld | ⊢ ( 𝜑  →  ( 𝐸  /  2 )  ∈  ℝ ) | 
						
							| 62 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 63 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 64 | 62 63 | rereccli | ⊢ ( 1  /  3 )  ∈  ℝ | 
						
							| 65 | 64 | a1i | ⊢ ( 𝜑  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 66 |  | rphalflt | ⊢ ( 𝐸  ∈  ℝ+  →  ( 𝐸  /  2 )  <  𝐸 ) | 
						
							| 67 | 15 66 | syl | ⊢ ( 𝜑  →  ( 𝐸  /  2 )  <  𝐸 ) | 
						
							| 68 | 61 60 65 67 17 | lttrd | ⊢ ( 𝜑  →  ( 𝐸  /  2 )  <  ( 1  /  3 ) ) | 
						
							| 69 | 19 3 5 7 6 16 8 9 27 32 12 13 44 58 59 68 | stoweidlem61 | ⊢ ( 𝜑  →  ∃ ℎ  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  ( 2  ·  ( 𝐸  /  2 ) ) ) | 
						
							| 70 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  ( 2  ·  ( 𝐸  /  2 ) ) | 
						
							| 71 | 3 70 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  ( 2  ·  ( 𝐸  /  2 ) ) ) | 
						
							| 72 |  | rsp | ⊢ ( ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  ( 2  ·  ( 𝐸  /  2 ) )  →  ( 𝑡  ∈  𝑇  →  ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  ( 2  ·  ( 𝐸  /  2 ) ) ) ) | 
						
							| 73 | 15 | rpcnd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 74 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 75 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 76 | 75 | a1i | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 77 | 73 74 76 | divcan2d | ⊢ ( 𝜑  →  ( 2  ·  ( 𝐸  /  2 ) )  =  𝐸 ) | 
						
							| 78 | 77 | breq2d | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  ( 2  ·  ( 𝐸  /  2 ) )  ↔  ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 79 | 78 | biimpd | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  ( 2  ·  ( 𝐸  /  2 ) )  →  ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 80 | 72 79 | sylan9r | ⊢ ( ( 𝜑  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  ( 2  ·  ( 𝐸  /  2 ) ) )  →  ( 𝑡  ∈  𝑇  →  ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 81 | 71 80 | ralrimi | ⊢ ( ( 𝜑  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  ( 2  ·  ( 𝐸  /  2 ) ) )  →  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 82 | 81 | ex | ⊢ ( 𝜑  →  ( ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  ( 2  ·  ( 𝐸  /  2 ) )  →  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 83 | 82 | reximdv | ⊢ ( 𝜑  →  ( ∃ ℎ  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  ( 2  ·  ( 𝐸  /  2 ) )  →  ∃ ℎ  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 84 | 69 83 | mpd | ⊢ ( 𝜑  →  ∃ ℎ  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 85 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  +  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 86 |  | nfcv | ⊢ Ⅎ 𝑡 ℎ | 
						
							| 87 |  | nfv | ⊢ Ⅎ 𝑡 ℎ  ∈  𝐴 | 
						
							| 88 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 | 
						
							| 89 | 87 88 | nfan | ⊢ Ⅎ 𝑡 ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 90 | 3 89 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 91 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  +  inf ( ran  𝐹 ,  ℝ ,   <  ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  +  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 92 | 47 | adantr | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 93 | 42 | adantr | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  →  inf ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 94 | 10 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 95 | 12 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 96 | 9 | sseld | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐴  →  𝑓  ∈  𝐶 ) ) | 
						
							| 97 | 8 | eleq2i | ⊢ ( 𝑓  ∈  𝐶  ↔  𝑓  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 98 | 96 97 | imbitrdi | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐴  →  𝑓  ∈  ( 𝐽  Cn  𝐾 ) ) ) | 
						
							| 99 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 100 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 101 | 5 | unieqi | ⊢ ∪  𝐾  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 102 | 100 101 | eqtr4i | ⊢ ℝ  =  ∪  𝐾 | 
						
							| 103 | 99 102 | cnf | ⊢ ( 𝑓  ∈  ( 𝐽  Cn  𝐾 )  →  𝑓 : ∪  𝐽 ⟶ ℝ ) | 
						
							| 104 | 98 103 | syl6 | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐴  →  𝑓 : ∪  𝐽 ⟶ ℝ ) ) | 
						
							| 105 |  | feq2 | ⊢ ( 𝑇  =  ∪  𝐽  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  𝑓 : ∪  𝐽 ⟶ ℝ ) ) | 
						
							| 106 | 6 105 | mp1i | ⊢ ( 𝜑  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  𝑓 : ∪  𝐽 ⟶ ℝ ) ) | 
						
							| 107 | 104 106 | sylibrd | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐴  →  𝑓 : 𝑇 ⟶ ℝ ) ) | 
						
							| 108 | 2 107 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝐴 𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  →  ∀ 𝑓  ∈  𝐴 𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 110 |  | simprl | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  →  ℎ  ∈  𝐴 ) | 
						
							| 111 | 55 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) )  =  ( 𝐻 ‘ 𝑡 ) ) | 
						
							| 112 | 111 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( ℎ ‘ 𝑡 )  −  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) )  =  ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) ) | 
						
							| 113 | 112 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  =  ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) ) ) | 
						
							| 114 | 113 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  ∧  𝑡  ∈  𝑇 )  →  ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  =  ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) ) ) | 
						
							| 115 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  ∧  𝑡  ∈  𝑇 )  →  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 116 |  | rspa | ⊢ ( ( ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸  ∧  𝑡  ∈  𝑇 )  →  ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 117 | 115 116 | sylancom | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  ∧  𝑡  ∈  𝑇 )  →  ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 118 | 114 117 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  ∧  𝑡  ∈  𝑇 )  →  ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  <  𝐸 ) | 
						
							| 119 | 118 | ex | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  →  ( 𝑡  ∈  𝑇  →  ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  <  𝐸 ) ) | 
						
							| 120 | 90 119 | ralrimi | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  →  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  <  𝐸 ) | 
						
							| 121 | 85 86 36 90 91 92 93 94 95 109 110 120 | stoweidlem21 | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  <  𝐸 ) )  →  ∃ 𝑓  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 122 | 84 121 | rexlimddv | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) |