| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem47.1 | ⊢ Ⅎ 𝑡 𝐹 | 
						
							| 2 |  | stoweidlem47.2 | ⊢ Ⅎ 𝑡 𝑆 | 
						
							| 3 |  | stoweidlem47.3 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 4 |  | stoweidlem47.4 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 5 |  | stoweidlem47.5 | ⊢ 𝐺  =  ( 𝑇  ×  { - 𝑆 } ) | 
						
							| 6 |  | stoweidlem47.6 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 7 |  | stoweidlem47.7 | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 8 |  | stoweidlem47.8 | ⊢ 𝐶  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 9 |  | stoweidlem47.9 | ⊢ ( 𝜑  →  𝐹  ∈  𝐶 ) | 
						
							| 10 |  | stoweidlem47.10 | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 11 | 5 | fveq1i | ⊢ ( 𝐺 ‘ 𝑡 )  =  ( ( 𝑇  ×  { - 𝑆 } ) ‘ 𝑡 ) | 
						
							| 12 | 10 | renegcld | ⊢ ( 𝜑  →  - 𝑆  ∈  ℝ ) | 
						
							| 13 |  | fvconst2g | ⊢ ( ( - 𝑆  ∈  ℝ  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑇  ×  { - 𝑆 } ) ‘ 𝑡 )  =  - 𝑆 ) | 
						
							| 14 | 12 13 | sylan | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑇  ×  { - 𝑆 } ) ‘ 𝑡 )  =  - 𝑆 ) | 
						
							| 15 | 11 14 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  =  - 𝑆 ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 )  +  ( 𝐺 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 )  +  - 𝑆 ) ) | 
						
							| 17 | 6 4 8 9 | fcnre | ⊢ ( 𝜑  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 18 | 17 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 19 | 18 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 20 | 10 | recnd | ⊢ ( 𝜑  →  𝑆  ∈  ℂ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑆  ∈  ℂ ) | 
						
							| 22 | 19 21 | negsubd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 )  +  - 𝑆 )  =  ( ( 𝐹 ‘ 𝑡 )  −  𝑆 ) ) | 
						
							| 23 | 16 22 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 )  +  ( 𝐺 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 )  −  𝑆 ) ) | 
						
							| 24 | 3 23 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  +  ( 𝐺 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  𝑆 ) ) ) | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑡 𝑇 | 
						
							| 26 | 2 | nfneg | ⊢ Ⅎ 𝑡 - 𝑆 | 
						
							| 27 | 26 | nfsn | ⊢ Ⅎ 𝑡 { - 𝑆 } | 
						
							| 28 | 25 27 | nfxp | ⊢ Ⅎ 𝑡 ( 𝑇  ×  { - 𝑆 } ) | 
						
							| 29 | 5 28 | nfcxfr | ⊢ Ⅎ 𝑡 𝐺 | 
						
							| 30 | 4 | a1i | ⊢ ( 𝜑  →  𝑇  =  ∪  𝐽 ) | 
						
							| 31 |  | istopon | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑇 )  ↔  ( 𝐽  ∈  Top  ∧  𝑇  =  ∪  𝐽 ) ) | 
						
							| 32 | 7 30 31 | sylanbrc | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑇 ) ) | 
						
							| 33 | 9 8 | eleqtrdi | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 34 |  | retopon | ⊢ ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ ) | 
						
							| 35 | 6 34 | eqeltri | ⊢ 𝐾  ∈  ( TopOn ‘ ℝ ) | 
						
							| 36 | 35 | a1i | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ ℝ ) ) | 
						
							| 37 |  | cnconst2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑇 )  ∧  𝐾  ∈  ( TopOn ‘ ℝ )  ∧  - 𝑆  ∈  ℝ )  →  ( 𝑇  ×  { - 𝑆 } )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 38 | 32 36 12 37 | syl3anc | ⊢ ( 𝜑  →  ( 𝑇  ×  { - 𝑆 } )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 39 | 5 38 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 40 | 1 29 3 6 32 33 39 | refsum2cn | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  +  ( 𝐺 ‘ 𝑡 ) ) )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 41 | 40 8 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  +  ( 𝐺 ‘ 𝑡 ) ) )  ∈  𝐶 ) | 
						
							| 42 | 24 41 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  𝑆 ) )  ∈  𝐶 ) |