Description: Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem47.1 | |
|
stoweidlem47.2 | |
||
stoweidlem47.3 | |
||
stoweidlem47.4 | |
||
stoweidlem47.5 | |
||
stoweidlem47.6 | |
||
stoweidlem47.7 | |
||
stoweidlem47.8 | |
||
stoweidlem47.9 | |
||
stoweidlem47.10 | |
||
Assertion | stoweidlem47 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem47.1 | |
|
2 | stoweidlem47.2 | |
|
3 | stoweidlem47.3 | |
|
4 | stoweidlem47.4 | |
|
5 | stoweidlem47.5 | |
|
6 | stoweidlem47.6 | |
|
7 | stoweidlem47.7 | |
|
8 | stoweidlem47.8 | |
|
9 | stoweidlem47.9 | |
|
10 | stoweidlem47.10 | |
|
11 | 5 | fveq1i | |
12 | 10 | renegcld | |
13 | fvconst2g | |
|
14 | 12 13 | sylan | |
15 | 11 14 | eqtrid | |
16 | 15 | oveq2d | |
17 | 6 4 8 9 | fcnre | |
18 | 17 | ffvelcdmda | |
19 | 18 | recnd | |
20 | 10 | recnd | |
21 | 20 | adantr | |
22 | 19 21 | negsubd | |
23 | 16 22 | eqtrd | |
24 | 3 23 | mpteq2da | |
25 | nfcv | |
|
26 | 2 | nfneg | |
27 | 26 | nfsn | |
28 | 25 27 | nfxp | |
29 | 5 28 | nfcxfr | |
30 | 4 | a1i | |
31 | istopon | |
|
32 | 7 30 31 | sylanbrc | |
33 | 9 8 | eleqtrdi | |
34 | retopon | |
|
35 | 6 34 | eqeltri | |
36 | 35 | a1i | |
37 | cnconst2 | |
|
38 | 32 36 12 37 | syl3anc | |
39 | 5 38 | eqeltrid | |
40 | 1 29 3 6 32 33 39 | refsum2cn | |
41 | 40 8 | eleqtrrdi | |
42 | 24 41 | eqeltrrd | |