Metamath Proof Explorer


Theorem stoweidlem47

Description: Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem47.1 _tF
stoweidlem47.2 _tS
stoweidlem47.3 tφ
stoweidlem47.4 T=J
stoweidlem47.5 G=T×S
stoweidlem47.6 K=topGenran.
stoweidlem47.7 φJTop
stoweidlem47.8 C=JCnK
stoweidlem47.9 φFC
stoweidlem47.10 φS
Assertion stoweidlem47 φtTFtSC

Proof

Step Hyp Ref Expression
1 stoweidlem47.1 _tF
2 stoweidlem47.2 _tS
3 stoweidlem47.3 tφ
4 stoweidlem47.4 T=J
5 stoweidlem47.5 G=T×S
6 stoweidlem47.6 K=topGenran.
7 stoweidlem47.7 φJTop
8 stoweidlem47.8 C=JCnK
9 stoweidlem47.9 φFC
10 stoweidlem47.10 φS
11 5 fveq1i Gt=T×St
12 10 renegcld φS
13 fvconst2g StTT×St=S
14 12 13 sylan φtTT×St=S
15 11 14 eqtrid φtTGt=S
16 15 oveq2d φtTFt+Gt=Ft+S
17 6 4 8 9 fcnre φF:T
18 17 ffvelcdmda φtTFt
19 18 recnd φtTFt
20 10 recnd φS
21 20 adantr φtTS
22 19 21 negsubd φtTFt+S=FtS
23 16 22 eqtrd φtTFt+Gt=FtS
24 3 23 mpteq2da φtTFt+Gt=tTFtS
25 nfcv _tT
26 2 nfneg _tS
27 26 nfsn _tS
28 25 27 nfxp _tT×S
29 5 28 nfcxfr _tG
30 4 a1i φT=J
31 istopon JTopOnTJTopT=J
32 7 30 31 sylanbrc φJTopOnT
33 9 8 eleqtrdi φFJCnK
34 retopon topGenran.TopOn
35 6 34 eqeltri KTopOn
36 35 a1i φKTopOn
37 cnconst2 JTopOnTKTopOnST×SJCnK
38 32 36 12 37 syl3anc φT×SJCnK
39 5 38 eqeltrid φGJCnK
40 1 29 3 6 32 33 39 refsum2cn φtTFt+GtJCnK
41 40 8 eleqtrrdi φtTFt+GtC
42 24 41 eqeltrrd φtTFtSC