Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem47.1 |
|
2 |
|
stoweidlem47.2 |
|
3 |
|
stoweidlem47.3 |
|
4 |
|
stoweidlem47.4 |
|
5 |
|
stoweidlem47.5 |
|
6 |
|
stoweidlem47.6 |
|
7 |
|
stoweidlem47.7 |
|
8 |
|
stoweidlem47.8 |
|
9 |
|
stoweidlem47.9 |
|
10 |
|
stoweidlem47.10 |
|
11 |
5
|
fveq1i |
|
12 |
10
|
renegcld |
|
13 |
|
fvconst2g |
|
14 |
12 13
|
sylan |
|
15 |
11 14
|
eqtrid |
|
16 |
15
|
oveq2d |
|
17 |
6 4 8 9
|
fcnre |
|
18 |
17
|
ffvelrnda |
|
19 |
18
|
recnd |
|
20 |
10
|
recnd |
|
21 |
20
|
adantr |
|
22 |
19 21
|
negsubd |
|
23 |
16 22
|
eqtrd |
|
24 |
3 23
|
mpteq2da |
|
25 |
|
nfcv |
|
26 |
2
|
nfneg |
|
27 |
26
|
nfsn |
|
28 |
25 27
|
nfxp |
|
29 |
5 28
|
nfcxfr |
|
30 |
4
|
a1i |
|
31 |
|
istopon |
|
32 |
7 30 31
|
sylanbrc |
|
33 |
9 8
|
eleqtrdi |
|
34 |
|
retopon |
|
35 |
6 34
|
eqeltri |
|
36 |
35
|
a1i |
|
37 |
|
cnconst2 |
|
38 |
32 36 12 37
|
syl3anc |
|
39 |
5 38
|
eqeltrid |
|
40 |
1 29 3 6 32 33 39
|
refsum2cn |
|
41 |
40 8
|
eleqtrrdi |
|
42 |
24 41
|
eqeltrrd |
|