| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem48.1 |
|
| 2 |
|
stoweidlem48.2 |
|
| 3 |
|
stoweidlem48.3 |
|
| 4 |
|
stoweidlem48.4 |
|
| 5 |
|
stoweidlem48.5 |
|
| 6 |
|
stoweidlem48.6 |
|
| 7 |
|
stoweidlem48.7 |
|
| 8 |
|
stoweidlem48.8 |
|
| 9 |
|
stoweidlem48.9 |
|
| 10 |
|
stoweidlem48.10 |
|
| 11 |
|
stoweidlem48.11 |
|
| 12 |
|
stoweidlem48.12 |
|
| 13 |
|
stoweidlem48.13 |
|
| 14 |
|
stoweidlem48.14 |
|
| 15 |
|
stoweidlem48.15 |
|
| 16 |
|
stoweidlem48.16 |
|
| 17 |
|
stoweidlem48.17 |
|
| 18 |
12
|
sselda |
|
| 19 |
|
nfra1 |
|
| 20 |
|
nfcv |
|
| 21 |
19 20
|
nfrabw |
|
| 22 |
3 21
|
nfcxfr |
|
| 23 |
3
|
eleq2i |
|
| 24 |
|
fveq1 |
|
| 25 |
24
|
breq2d |
|
| 26 |
24
|
breq1d |
|
| 27 |
25 26
|
anbi12d |
|
| 28 |
27
|
ralbidv |
|
| 29 |
28
|
elrab |
|
| 30 |
23 29
|
sylbb |
|
| 31 |
30
|
simpld |
|
| 32 |
31 15
|
sylan2 |
|
| 33 |
|
eqid |
|
| 34 |
2 3 33 15 16
|
stoweidlem16 |
|
| 35 |
1 22 4 5 6 7 14 8 10 32 34
|
fmuldfeq |
|
| 36 |
18 35
|
syldan |
|
| 37 |
|
elnnuz |
|
| 38 |
8 37
|
sylib |
|
| 39 |
38
|
adantr |
|
| 40 |
|
nfv |
|
| 41 |
1 40
|
nfan |
|
| 42 |
10
|
ffvelcdmda |
|
| 43 |
|
fveq1 |
|
| 44 |
43
|
breq2d |
|
| 45 |
43
|
breq1d |
|
| 46 |
44 45
|
anbi12d |
|
| 47 |
46
|
ralbidv |
|
| 48 |
47 3
|
elrab2 |
|
| 49 |
42 48
|
sylib |
|
| 50 |
49
|
simpld |
|
| 51 |
|
simpl |
|
| 52 |
51 50
|
jca |
|
| 53 |
|
eleq1 |
|
| 54 |
53
|
anbi2d |
|
| 55 |
|
feq1 |
|
| 56 |
54 55
|
imbi12d |
|
| 57 |
56 15
|
vtoclg |
|
| 58 |
50 52 57
|
sylc |
|
| 59 |
58
|
adantlr |
|
| 60 |
|
simplr |
|
| 61 |
59 60
|
ffvelcdmd |
|
| 62 |
|
eqid |
|
| 63 |
41 61 62
|
fmptdf |
|
| 64 |
|
simpr |
|
| 65 |
|
ovex |
|
| 66 |
|
mptexg |
|
| 67 |
65 66
|
mp1i |
|
| 68 |
6
|
fvmpt2 |
|
| 69 |
64 67 68
|
syl2anc |
|
| 70 |
69
|
feq1d |
|
| 71 |
63 70
|
mpbird |
|
| 72 |
18 71
|
syldan |
|
| 73 |
72
|
ffvelcdmda |
|
| 74 |
|
remulcl |
|
| 75 |
74
|
adantl |
|
| 76 |
39 73 75
|
seqcl |
|
| 77 |
7
|
fvmpt2 |
|
| 78 |
18 76 77
|
syl2anc |
|
| 79 |
|
nfcv |
|
| 80 |
|
nfmpt1 |
|
| 81 |
79 80
|
nfmpt |
|
| 82 |
6 81
|
nfcxfr |
|
| 83 |
|
nfcv |
|
| 84 |
82 83
|
nffv |
|
| 85 |
|
nfv |
|
| 86 |
1 85
|
nfan |
|
| 87 |
|
nfcv |
|
| 88 |
|
eqid |
|
| 89 |
8
|
adantr |
|
| 90 |
|
simpll |
|
| 91 |
|
simpr |
|
| 92 |
18
|
adantr |
|
| 93 |
49
|
simprd |
|
| 94 |
93
|
r19.21bi |
|
| 95 |
94
|
simpld |
|
| 96 |
90 91 92 95
|
syl21anc |
|
| 97 |
69
|
fveq1d |
|
| 98 |
90 92 97
|
syl2anc |
|
| 99 |
90 92 91 61
|
syl21anc |
|
| 100 |
62
|
fvmpt2 |
|
| 101 |
91 99 100
|
syl2anc |
|
| 102 |
98 101
|
eqtrd |
|
| 103 |
96 102
|
breqtrrd |
|
| 104 |
94
|
simprd |
|
| 105 |
90 91 92 104
|
syl21anc |
|
| 106 |
102 105
|
eqbrtrd |
|
| 107 |
17
|
adantr |
|
| 108 |
11
|
sselda |
|
| 109 |
|
eluni |
|
| 110 |
108 109
|
sylib |
|
| 111 |
|
ffn |
|
| 112 |
|
fvelrnb |
|
| 113 |
9 111 112
|
3syl |
|
| 114 |
113
|
biimpa |
|
| 115 |
114
|
adantrl |
|
| 116 |
|
simplr |
|
| 117 |
|
simpr |
|
| 118 |
116 117
|
eleqtrrd |
|
| 119 |
118
|
ex |
|
| 120 |
119
|
reximdv |
|
| 121 |
120
|
adantrr |
|
| 122 |
115 121
|
mpd |
|
| 123 |
122
|
ex |
|
| 124 |
123
|
exlimdv |
|
| 125 |
124
|
adantr |
|
| 126 |
110 125
|
mpd |
|
| 127 |
|
simplll |
|
| 128 |
|
simplr |
|
| 129 |
|
simpr |
|
| 130 |
|
nfv |
|
| 131 |
|
nfv |
|
| 132 |
1 130 131
|
nf3an |
|
| 133 |
|
nfv |
|
| 134 |
132 133
|
nfim |
|
| 135 |
|
eleq1 |
|
| 136 |
|
fveq2 |
|
| 137 |
136
|
eleq2d |
|
| 138 |
135 137
|
3anbi23d |
|
| 139 |
|
fveq2 |
|
| 140 |
139
|
fveq1d |
|
| 141 |
140
|
breq1d |
|
| 142 |
138 141
|
imbi12d |
|
| 143 |
13
|
r19.21bi |
|
| 144 |
143
|
3impa |
|
| 145 |
134 142 144
|
chvarfv |
|
| 146 |
127 128 129 145
|
syl3anc |
|
| 147 |
146
|
ex |
|
| 148 |
147
|
reximdva |
|
| 149 |
126 148
|
mpd |
|
| 150 |
86 130
|
nfan |
|
| 151 |
|
nfcv |
|
| 152 |
84 151
|
nffv |
|
| 153 |
152
|
nfeq1 |
|
| 154 |
150 153
|
nfim |
|
| 155 |
135
|
anbi2d |
|
| 156 |
|
fveq2 |
|
| 157 |
156 140
|
eqeq12d |
|
| 158 |
155 157
|
imbi12d |
|
| 159 |
154 158 102
|
chvarfv |
|
| 160 |
159
|
breq1d |
|
| 161 |
160
|
biimprd |
|
| 162 |
161
|
reximdva |
|
| 163 |
149 162
|
mpd |
|
| 164 |
84 86 87 88 89 72 103 106 107 163
|
fmul01lt1 |
|
| 165 |
78 164
|
eqbrtrd |
|
| 166 |
36 165
|
eqbrtrd |
|
| 167 |
166
|
ex |
|
| 168 |
2 167
|
ralrimi |
|