Metamath Proof Explorer


Theorem stoweidlem49

Description: There exists a function q_n as in the proof of Lemma 1 in BrosowskiDeutsh p. 91 (at the top of page 91): 0 <= q_n <= 1 , q_n < ε on T \ U , and q_n > 1 - ε on V . Here y is used to represent the final q_n in the paper (the one with n large enough), N represents n in the paper, K represents k , D represents δ, E represents ε, and P represents p . (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem49.1 _tP
stoweidlem49.2 tφ
stoweidlem49.3 V=tT|Pt<D2
stoweidlem49.4 φD+
stoweidlem49.5 φD<1
stoweidlem49.6 φPA
stoweidlem49.7 φP:T
stoweidlem49.8 φtT0PtPt1
stoweidlem49.9 φtTUDPt
stoweidlem49.10 φfAf:T
stoweidlem49.11 φfAgAtTft+gtA
stoweidlem49.12 φfAgAtTftgtA
stoweidlem49.13 φxtTxA
stoweidlem49.14 φE+
Assertion stoweidlem49 φyAtT0ytyt1tV1E<yttTUyt<E

Proof

Step Hyp Ref Expression
1 stoweidlem49.1 _tP
2 stoweidlem49.2 tφ
3 stoweidlem49.3 V=tT|Pt<D2
4 stoweidlem49.4 φD+
5 stoweidlem49.5 φD<1
6 stoweidlem49.6 φPA
7 stoweidlem49.7 φP:T
8 stoweidlem49.8 φtT0PtPt1
9 stoweidlem49.9 φtTUDPt
10 stoweidlem49.10 φfAf:T
11 stoweidlem49.11 φfAgAtTft+gtA
12 stoweidlem49.12 φfAgAtTftgtA
13 stoweidlem49.13 φxtTxA
14 stoweidlem49.14 φE+
15 breq2 j=i1D<j1D<i
16 15 cbvrabv j|1D<j=i|1D<i
17 16 4 5 stoweidlem14 φk1<kDkD2<1
18 eqid i01kDi=i01kDi
19 eqid i0kD2i=i0kD2i
20 nnre kk
21 20 adantl φkk
22 4 rpred φD
23 22 adantr φkD
24 21 23 remulcld φkkD
25 24 adantr φk1<kDkD2<1kD
26 simprl φk1<kDkD2<11<kD
27 24 rehalfcld φkkD2
28 nngt0 k0<k
29 28 adantl φk0<k
30 4 rpgt0d φ0<D
31 30 adantr φk0<D
32 21 23 29 31 mulgt0d φk0<kD
33 2re 2
34 2pos 0<2
35 33 34 pm3.2i 20<2
36 35 a1i φk20<2
37 divgt0 kD0<kD20<20<kD2
38 24 32 36 37 syl21anc φk0<kD2
39 27 38 elrpd φkkD2+
40 39 adantr φk1<kDkD2<1kD2+
41 simprr φk1<kDkD2<1kD2<1
42 14 ad2antrr φk1<kDkD2<1E+
43 18 19 25 26 40 41 42 stoweidlem7 φk1<kDkD2<1n1E<1kD2n1kDn<E
44 43 ex φk1<kDkD2<1n1E<1kD2n1kDn<E
45 44 reximdva φk1<kDkD2<1kn1E<1kD2n1kDn<E
46 17 45 mpd φkn1E<1kD2n1kDn<E
47 nfv tkn
48 2 47 nfan tφkn
49 nfv t1E<1kD2n1kDn<E
50 48 49 nfan tφkn1E<1kD2n1kDn<E
51 eqid tT1Ptnkn=tT1Ptnkn
52 simplrr φkn1E<1kD2n1kDn<En
53 simplrl φkn1E<1kD2n1kDn<Ek
54 4 ad2antrr φkn1E<1kD2n1kDn<ED+
55 5 ad2antrr φkn1E<1kD2n1kDn<ED<1
56 6 ad2antrr φkn1E<1kD2n1kDn<EPA
57 7 ad2antrr φkn1E<1kD2n1kDn<EP:T
58 8 ad2antrr φkn1E<1kD2n1kDn<EtT0PtPt1
59 9 ad2antrr φkn1E<1kD2n1kDn<EtTUDPt
60 10 ad4ant14 φkn1E<1kD2n1kDn<EfAf:T
61 simp1ll φkn1E<1kD2n1kDn<EfAgAφ
62 61 11 syld3an1 φkn1E<1kD2n1kDn<EfAgAtTft+gtA
63 61 12 syld3an1 φkn1E<1kD2n1kDn<EfAgAtTftgtA
64 13 ad4ant14 φkn1E<1kD2n1kDn<ExtTxA
65 14 ad2antrr φkn1E<1kD2n1kDn<EE+
66 simprl φkn1E<1kD2n1kDn<E1E<1kD2n
67 simprr φkn1E<1kD2n1kDn<E1kDn<E
68 1 50 3 51 52 53 54 55 56 57 58 59 60 62 63 64 65 66 67 stoweidlem45 φkn1E<1kD2n1kDn<EyAtT0ytyt1tV1E<yttTUyt<E
69 68 ex φkn1E<1kD2n1kDn<EyAtT0ytyt1tV1E<yttTUyt<E
70 69 rexlimdvva φkn1E<1kD2n1kDn<EyAtT0ytyt1tV1E<yttTUyt<E
71 46 70 mpd φyAtT0ytyt1tV1E<yttTUyt<E