Description: There exists a function q_n as in the proof of Lemma 1 in BrosowskiDeutsh p. 91 (at the top of page 91): 0 <= q_n <= 1 , q_n < ε on T \ U , and q_n > 1 - ε on V . Here y is used to represent the final q_n in the paper (the one with n large enough), N represents n in the paper, K represents k , D represents δ, E represents ε, and P represents p . (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem49.1 | |
|
stoweidlem49.2 | |
||
stoweidlem49.3 | |
||
stoweidlem49.4 | |
||
stoweidlem49.5 | |
||
stoweidlem49.6 | |
||
stoweidlem49.7 | |
||
stoweidlem49.8 | |
||
stoweidlem49.9 | |
||
stoweidlem49.10 | |
||
stoweidlem49.11 | |
||
stoweidlem49.12 | |
||
stoweidlem49.13 | |
||
stoweidlem49.14 | |
||
Assertion | stoweidlem49 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem49.1 | |
|
2 | stoweidlem49.2 | |
|
3 | stoweidlem49.3 | |
|
4 | stoweidlem49.4 | |
|
5 | stoweidlem49.5 | |
|
6 | stoweidlem49.6 | |
|
7 | stoweidlem49.7 | |
|
8 | stoweidlem49.8 | |
|
9 | stoweidlem49.9 | |
|
10 | stoweidlem49.10 | |
|
11 | stoweidlem49.11 | |
|
12 | stoweidlem49.12 | |
|
13 | stoweidlem49.13 | |
|
14 | stoweidlem49.14 | |
|
15 | breq2 | |
|
16 | 15 | cbvrabv | |
17 | 16 4 5 | stoweidlem14 | |
18 | eqid | |
|
19 | eqid | |
|
20 | nnre | |
|
21 | 20 | adantl | |
22 | 4 | rpred | |
23 | 22 | adantr | |
24 | 21 23 | remulcld | |
25 | 24 | adantr | |
26 | simprl | |
|
27 | 24 | rehalfcld | |
28 | nngt0 | |
|
29 | 28 | adantl | |
30 | 4 | rpgt0d | |
31 | 30 | adantr | |
32 | 21 23 29 31 | mulgt0d | |
33 | 2re | |
|
34 | 2pos | |
|
35 | 33 34 | pm3.2i | |
36 | 35 | a1i | |
37 | divgt0 | |
|
38 | 24 32 36 37 | syl21anc | |
39 | 27 38 | elrpd | |
40 | 39 | adantr | |
41 | simprr | |
|
42 | 14 | ad2antrr | |
43 | 18 19 25 26 40 41 42 | stoweidlem7 | |
44 | 43 | ex | |
45 | 44 | reximdva | |
46 | 17 45 | mpd | |
47 | nfv | |
|
48 | 2 47 | nfan | |
49 | nfv | |
|
50 | 48 49 | nfan | |
51 | eqid | |
|
52 | simplrr | |
|
53 | simplrl | |
|
54 | 4 | ad2antrr | |
55 | 5 | ad2antrr | |
56 | 6 | ad2antrr | |
57 | 7 | ad2antrr | |
58 | 8 | ad2antrr | |
59 | 9 | ad2antrr | |
60 | 10 | ad4ant14 | |
61 | simp1ll | |
|
62 | 61 11 | syld3an1 | |
63 | 61 12 | syld3an1 | |
64 | 13 | ad4ant14 | |
65 | 14 | ad2antrr | |
66 | simprl | |
|
67 | simprr | |
|
68 | 1 50 3 51 52 53 54 55 56 57 58 59 60 62 63 64 65 66 67 | stoweidlem45 | |
69 | 68 | ex | |
70 | 69 | rexlimdvva | |
71 | 46 70 | mpd | |