Metamath Proof Explorer


Theorem stoweidlem49

Description: There exists a function q_n as in the proof of Lemma 1 in BrosowskiDeutsh p. 91 (at the top of page 91): 0 <= q_n <= 1 , q_n < ε on T \ U , and q_n > 1 - ε on V . Here y is used to represent the final q_n in the paper (the one with n large enough), N represents n in the paper, K represents k , D represents δ, E represents ε, and P represents p . (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem49.1 _ t P
stoweidlem49.2 t φ
stoweidlem49.3 V = t T | P t < D 2
stoweidlem49.4 φ D +
stoweidlem49.5 φ D < 1
stoweidlem49.6 φ P A
stoweidlem49.7 φ P : T
stoweidlem49.8 φ t T 0 P t P t 1
stoweidlem49.9 φ t T U D P t
stoweidlem49.10 φ f A f : T
stoweidlem49.11 φ f A g A t T f t + g t A
stoweidlem49.12 φ f A g A t T f t g t A
stoweidlem49.13 φ x t T x A
stoweidlem49.14 φ E +
Assertion stoweidlem49 φ y A t T 0 y t y t 1 t V 1 E < y t t T U y t < E

Proof

Step Hyp Ref Expression
1 stoweidlem49.1 _ t P
2 stoweidlem49.2 t φ
3 stoweidlem49.3 V = t T | P t < D 2
4 stoweidlem49.4 φ D +
5 stoweidlem49.5 φ D < 1
6 stoweidlem49.6 φ P A
7 stoweidlem49.7 φ P : T
8 stoweidlem49.8 φ t T 0 P t P t 1
9 stoweidlem49.9 φ t T U D P t
10 stoweidlem49.10 φ f A f : T
11 stoweidlem49.11 φ f A g A t T f t + g t A
12 stoweidlem49.12 φ f A g A t T f t g t A
13 stoweidlem49.13 φ x t T x A
14 stoweidlem49.14 φ E +
15 breq2 j = i 1 D < j 1 D < i
16 15 cbvrabv j | 1 D < j = i | 1 D < i
17 16 4 5 stoweidlem14 φ k 1 < k D k D 2 < 1
18 eqid i 0 1 k D i = i 0 1 k D i
19 eqid i 0 k D 2 i = i 0 k D 2 i
20 nnre k k
21 20 adantl φ k k
22 4 rpred φ D
23 22 adantr φ k D
24 21 23 remulcld φ k k D
25 24 adantr φ k 1 < k D k D 2 < 1 k D
26 simprl φ k 1 < k D k D 2 < 1 1 < k D
27 24 rehalfcld φ k k D 2
28 nngt0 k 0 < k
29 28 adantl φ k 0 < k
30 4 rpgt0d φ 0 < D
31 30 adantr φ k 0 < D
32 21 23 29 31 mulgt0d φ k 0 < k D
33 2re 2
34 2pos 0 < 2
35 33 34 pm3.2i 2 0 < 2
36 35 a1i φ k 2 0 < 2
37 divgt0 k D 0 < k D 2 0 < 2 0 < k D 2
38 24 32 36 37 syl21anc φ k 0 < k D 2
39 27 38 elrpd φ k k D 2 +
40 39 adantr φ k 1 < k D k D 2 < 1 k D 2 +
41 simprr φ k 1 < k D k D 2 < 1 k D 2 < 1
42 14 ad2antrr φ k 1 < k D k D 2 < 1 E +
43 18 19 25 26 40 41 42 stoweidlem7 φ k 1 < k D k D 2 < 1 n 1 E < 1 k D 2 n 1 k D n < E
44 43 ex φ k 1 < k D k D 2 < 1 n 1 E < 1 k D 2 n 1 k D n < E
45 44 reximdva φ k 1 < k D k D 2 < 1 k n 1 E < 1 k D 2 n 1 k D n < E
46 17 45 mpd φ k n 1 E < 1 k D 2 n 1 k D n < E
47 nfv t k n
48 2 47 nfan t φ k n
49 nfv t 1 E < 1 k D 2 n 1 k D n < E
50 48 49 nfan t φ k n 1 E < 1 k D 2 n 1 k D n < E
51 eqid t T 1 P t n k n = t T 1 P t n k n
52 simplrr φ k n 1 E < 1 k D 2 n 1 k D n < E n
53 simplrl φ k n 1 E < 1 k D 2 n 1 k D n < E k
54 4 ad2antrr φ k n 1 E < 1 k D 2 n 1 k D n < E D +
55 5 ad2antrr φ k n 1 E < 1 k D 2 n 1 k D n < E D < 1
56 6 ad2antrr φ k n 1 E < 1 k D 2 n 1 k D n < E P A
57 7 ad2antrr φ k n 1 E < 1 k D 2 n 1 k D n < E P : T
58 8 ad2antrr φ k n 1 E < 1 k D 2 n 1 k D n < E t T 0 P t P t 1
59 9 ad2antrr φ k n 1 E < 1 k D 2 n 1 k D n < E t T U D P t
60 10 ad4ant14 φ k n 1 E < 1 k D 2 n 1 k D n < E f A f : T
61 simp1ll φ k n 1 E < 1 k D 2 n 1 k D n < E f A g A φ
62 61 11 syld3an1 φ k n 1 E < 1 k D 2 n 1 k D n < E f A g A t T f t + g t A
63 61 12 syld3an1 φ k n 1 E < 1 k D 2 n 1 k D n < E f A g A t T f t g t A
64 13 ad4ant14 φ k n 1 E < 1 k D 2 n 1 k D n < E x t T x A
65 14 ad2antrr φ k n 1 E < 1 k D 2 n 1 k D n < E E +
66 simprl φ k n 1 E < 1 k D 2 n 1 k D n < E 1 E < 1 k D 2 n
67 simprr φ k n 1 E < 1 k D 2 n 1 k D n < E 1 k D n < E
68 1 50 3 51 52 53 54 55 56 57 58 59 60 62 63 64 65 66 67 stoweidlem45 φ k n 1 E < 1 k D 2 n 1 k D n < E y A t T 0 y t y t 1 t V 1 E < y t t T U y t < E
69 68 ex φ k n 1 E < 1 k D 2 n 1 k D n < E y A t T 0 y t y t 1 t V 1 E < y t t T U y t < E
70 69 rexlimdvva φ k n 1 E < 1 k D 2 n 1 k D n < E y A t T 0 y t y t 1 t V 1 E < y t t T U y t < E
71 46 70 mpd φ y A t T 0 y t y t 1 t V 1 E < y t t T U y t < E