Metamath Proof Explorer


Theorem stoweidlem50

Description: This lemma proves that sets U(t) as defined in Lemma 1 of BrosowskiDeutsh p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem50.1 _ t U
stoweidlem50.2 t φ
stoweidlem50.3 K = topGen ran .
stoweidlem50.4 Q = h A | h Z = 0 t T 0 h t h t 1
stoweidlem50.5 W = w J | h Q w = t T | 0 < h t
stoweidlem50.6 T = J
stoweidlem50.7 C = J Cn K
stoweidlem50.8 φ J Comp
stoweidlem50.9 φ A C
stoweidlem50.10 φ f A g A t T f t + g t A
stoweidlem50.11 φ f A g A t T f t g t A
stoweidlem50.12 φ x t T x A
stoweidlem50.13 φ r T t T r t q A q r q t
stoweidlem50.14 φ U J
stoweidlem50.15 φ Z U
Assertion stoweidlem50 φ u u Fin u W T U u

Proof

Step Hyp Ref Expression
1 stoweidlem50.1 _ t U
2 stoweidlem50.2 t φ
3 stoweidlem50.3 K = topGen ran .
4 stoweidlem50.4 Q = h A | h Z = 0 t T 0 h t h t 1
5 stoweidlem50.5 W = w J | h Q w = t T | 0 < h t
6 stoweidlem50.6 T = J
7 stoweidlem50.7 C = J Cn K
8 stoweidlem50.8 φ J Comp
9 stoweidlem50.9 φ A C
10 stoweidlem50.10 φ f A g A t T f t + g t A
11 stoweidlem50.11 φ f A g A t T f t g t A
12 stoweidlem50.12 φ x t T x A
13 stoweidlem50.13 φ r T t T r t q A q r q t
14 stoweidlem50.14 φ U J
15 stoweidlem50.15 φ Z U
16 nfrab1 _ h h A | h Z = 0 t T 0 h t h t 1
17 4 16 nfcxfr _ h Q
18 nfv q φ
19 9 7 sseqtrdi φ A J Cn K
20 8 uniexd φ J V
21 6 20 eqeltrid φ T V
22 1 17 18 2 3 4 5 6 8 19 10 11 12 13 14 15 21 stoweidlem46 φ T U W
23 dfin4 T U = T T U
24 elssuni U J U J
25 14 24 syl φ U J
26 25 6 sseqtrrdi φ U T
27 sseqin2 U T T U = U
28 26 27 sylib φ T U = U
29 23 28 eqtr3id φ T T U = U
30 29 14 eqeltrd φ T T U J
31 cmptop J Comp J Top
32 8 31 syl φ J Top
33 difssd φ T U T
34 6 iscld2 J Top T U T T U Clsd J T T U J
35 32 33 34 syl2anc φ T U Clsd J T T U J
36 30 35 mpbird φ T U Clsd J
37 cmpcld J Comp T U Clsd J J 𝑡 T U Comp
38 8 36 37 syl2anc φ J 𝑡 T U Comp
39 6 cmpsub J Top T U T J 𝑡 T U Comp c 𝒫 J T U c u 𝒫 c Fin T U u
40 32 33 39 syl2anc φ J 𝑡 T U Comp c 𝒫 J T U c u 𝒫 c Fin T U u
41 38 40 mpbid φ c 𝒫 J T U c u 𝒫 c Fin T U u
42 ssrab2 w J | h Q w = t T | 0 < h t J
43 5 42 eqsstri W J
44 5 8 rabexd φ W V
45 elpwg W V W 𝒫 J W J
46 44 45 syl φ W 𝒫 J W J
47 43 46 mpbiri φ W 𝒫 J
48 unieq c = W c = W
49 48 sseq2d c = W T U c T U W
50 pweq c = W 𝒫 c = 𝒫 W
51 50 ineq1d c = W 𝒫 c Fin = 𝒫 W Fin
52 51 rexeqdv c = W u 𝒫 c Fin T U u u 𝒫 W Fin T U u
53 49 52 imbi12d c = W T U c u 𝒫 c Fin T U u T U W u 𝒫 W Fin T U u
54 53 rspccva c 𝒫 J T U c u 𝒫 c Fin T U u W 𝒫 J T U W u 𝒫 W Fin T U u
55 41 47 54 syl2anc φ T U W u 𝒫 W Fin T U u
56 55 imp φ T U W u 𝒫 W Fin T U u
57 df-rex u 𝒫 W Fin T U u u u 𝒫 W Fin T U u
58 56 57 sylib φ T U W u u 𝒫 W Fin T U u
59 elinel2 u 𝒫 W Fin u Fin
60 59 ad2antrl φ T U W u 𝒫 W Fin T U u u Fin
61 elinel1 u 𝒫 W Fin u 𝒫 W
62 61 ad2antrl φ T U W u 𝒫 W Fin T U u u 𝒫 W
63 62 elpwid φ T U W u 𝒫 W Fin T U u u W
64 simprr φ T U W u 𝒫 W Fin T U u T U u
65 60 63 64 3jca φ T U W u 𝒫 W Fin T U u u Fin u W T U u
66 65 ex φ T U W u 𝒫 W Fin T U u u Fin u W T U u
67 66 eximdv φ T U W u u 𝒫 W Fin T U u u u Fin u W T U u
68 58 67 mpd φ T U W u u Fin u W T U u
69 22 68 mpdan φ u u Fin u W T U u