| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmpsub.1 |
|
| 2 |
|
eqid |
|
| 3 |
2
|
iscmp |
|
| 4 |
|
id |
|
| 5 |
1
|
topopn |
|
| 6 |
|
ssexg |
|
| 7 |
4 5 6
|
syl2anr |
|
| 8 |
|
resttop |
|
| 9 |
7 8
|
syldan |
|
| 10 |
|
ibar |
|
| 11 |
10
|
bicomd |
|
| 12 |
9 11
|
syl |
|
| 13 |
3 12
|
bitrid |
|
| 14 |
|
vex |
|
| 15 |
|
eqeq1 |
|
| 16 |
15
|
rexbidv |
|
| 17 |
14 16
|
elab |
|
| 18 |
|
velpw |
|
| 19 |
|
ssel2 |
|
| 20 |
|
ineq1 |
|
| 21 |
20
|
rspceeqv |
|
| 22 |
21
|
ex |
|
| 23 |
19 22
|
syl |
|
| 24 |
23
|
ex |
|
| 25 |
18 24
|
sylbi |
|
| 26 |
25
|
adantl |
|
| 27 |
26
|
rexlimdv |
|
| 28 |
|
simpll |
|
| 29 |
1
|
sseq2i |
|
| 30 |
|
uniexg |
|
| 31 |
|
ssexg |
|
| 32 |
30 31
|
sylan2 |
|
| 33 |
32
|
ancoms |
|
| 34 |
29 33
|
sylan2b |
|
| 35 |
34
|
adantr |
|
| 36 |
|
elrest |
|
| 37 |
28 35 36
|
syl2anc |
|
| 38 |
27 37
|
sylibrd |
|
| 39 |
17 38
|
biimtrid |
|
| 40 |
39
|
ssrdv |
|
| 41 |
|
vex |
|
| 42 |
41
|
abrexex |
|
| 43 |
42
|
elpw |
|
| 44 |
40 43
|
sylibr |
|
| 45 |
|
unieq |
|
| 46 |
45
|
eqeq2d |
|
| 47 |
|
pweq |
|
| 48 |
47
|
ineq1d |
|
| 49 |
48
|
rexeqdv |
|
| 50 |
46 49
|
imbi12d |
|
| 51 |
50
|
rspcva |
|
| 52 |
44 51
|
sylan |
|
| 53 |
52
|
ex |
|
| 54 |
1
|
restuni |
|
| 55 |
54
|
ad2antrr |
|
| 56 |
|
vex |
|
| 57 |
56
|
inex1 |
|
| 58 |
57
|
dfiun2 |
|
| 59 |
|
incom |
|
| 60 |
59
|
a1i |
|
| 61 |
60
|
iuneq2dv |
|
| 62 |
58 61
|
eqtr3id |
|
| 63 |
|
iunin2 |
|
| 64 |
|
uniiun |
|
| 65 |
64
|
eqcomi |
|
| 66 |
65
|
a1i |
|
| 67 |
66
|
ineq2d |
|
| 68 |
|
incom |
|
| 69 |
|
sseqin2 |
|
| 70 |
69
|
biimpi |
|
| 71 |
68 70
|
eqtrid |
|
| 72 |
71
|
adantl |
|
| 73 |
67 72
|
eqtrd |
|
| 74 |
63 73
|
eqtrid |
|
| 75 |
62 74
|
eqtr2d |
|
| 76 |
55 75
|
eqeq12d |
|
| 77 |
55
|
eqeq1d |
|
| 78 |
77
|
rexbidv |
|
| 79 |
76 78
|
imbi12d |
|
| 80 |
|
eqid |
|
| 81 |
80
|
a1bi |
|
| 82 |
|
elin |
|
| 83 |
|
velpw |
|
| 84 |
|
dfss3 |
|
| 85 |
|
vex |
|
| 86 |
|
eqeq1 |
|
| 87 |
86
|
rexbidv |
|
| 88 |
85 87
|
elab |
|
| 89 |
88
|
ralbii |
|
| 90 |
83 84 89
|
3bitri |
|
| 91 |
90
|
anbi1i |
|
| 92 |
82 91
|
bitri |
|
| 93 |
|
ineq1 |
|
| 94 |
93
|
eqeq2d |
|
| 95 |
94
|
ac6sfi |
|
| 96 |
95
|
ancoms |
|
| 97 |
96
|
adantl |
|
| 98 |
|
frn |
|
| 99 |
98
|
ad2antrl |
|
| 100 |
|
vex |
|
| 101 |
100
|
rnex |
|
| 102 |
101
|
elpw |
|
| 103 |
99 102
|
sylibr |
|
| 104 |
|
simprr |
|
| 105 |
104
|
ad2antrr |
|
| 106 |
|
ffn |
|
| 107 |
|
dffn4 |
|
| 108 |
106 107
|
sylib |
|
| 109 |
|
fodomfi |
|
| 110 |
108 109
|
sylan2 |
|
| 111 |
110
|
adantll |
|
| 112 |
111
|
adantll |
|
| 113 |
112
|
ad2ant2r |
|
| 114 |
|
domfi |
|
| 115 |
105 113 114
|
syl2anc |
|
| 116 |
103 115
|
elind |
|
| 117 |
|
id |
|
| 118 |
|
fveq2 |
|
| 119 |
118
|
ineq1d |
|
| 120 |
117 119
|
eqeq12d |
|
| 121 |
120
|
rspccv |
|
| 122 |
|
pm2.27 |
|
| 123 |
|
inss1 |
|
| 124 |
|
sseq1 |
|
| 125 |
123 124
|
mpbiri |
|
| 126 |
|
ssel |
|
| 127 |
126
|
a1dd |
|
| 128 |
125 127
|
syl |
|
| 129 |
128
|
a1i |
|
| 130 |
129
|
3imp |
|
| 131 |
|
fnfvelrn |
|
| 132 |
131
|
expcom |
|
| 133 |
132
|
3ad2ant1 |
|
| 134 |
106 133
|
syl5 |
|
| 135 |
130 134
|
jcad |
|
| 136 |
135
|
3exp |
|
| 137 |
122 136
|
syld |
|
| 138 |
137
|
com3r |
|
| 139 |
138
|
imp |
|
| 140 |
139
|
com3l |
|
| 141 |
140
|
impcom |
|
| 142 |
121 141
|
sylan2 |
|
| 143 |
|
fvex |
|
| 144 |
|
eleq2 |
|
| 145 |
|
eleq1 |
|
| 146 |
144 145
|
anbi12d |
|
| 147 |
143 146
|
spcev |
|
| 148 |
142 147
|
syl6 |
|
| 149 |
148
|
exlimdv |
|
| 150 |
|
eluni |
|
| 151 |
|
eluni |
|
| 152 |
149 150 151
|
3imtr4g |
|
| 153 |
152
|
ssrdv |
|
| 154 |
153
|
adantl |
|
| 155 |
|
sseq1 |
|
| 156 |
155
|
ad2antlr |
|
| 157 |
154 156
|
mpbird |
|
| 158 |
116 157
|
jca |
|
| 159 |
158
|
ex |
|
| 160 |
159
|
eximdv |
|
| 161 |
160
|
ex |
|
| 162 |
161
|
com23 |
|
| 163 |
|
unieq |
|
| 164 |
163
|
sseq2d |
|
| 165 |
164
|
rspcev |
|
| 166 |
165
|
exlimiv |
|
| 167 |
162 166
|
syl8 |
|
| 168 |
97 167
|
mpd |
|
| 169 |
92 168
|
sylan2b |
|
| 170 |
169
|
rexlimdva |
|
| 171 |
81 170
|
biimtrrid |
|
| 172 |
79 171
|
sylbird |
|
| 173 |
172
|
ex |
|
| 174 |
173
|
com23 |
|
| 175 |
53 174
|
syld |
|
| 176 |
175
|
ralrimdva |
|
| 177 |
1
|
cmpsublem |
|
| 178 |
176 177
|
impbid |
|
| 179 |
13 178
|
bitrd |
|