| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem50.1 | ⊢ Ⅎ 𝑡 𝑈 | 
						
							| 2 |  | stoweidlem50.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem50.3 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 4 |  | stoweidlem50.4 | ⊢ 𝑄  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } | 
						
							| 5 |  | stoweidlem50.5 | ⊢ 𝑊  =  { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } | 
						
							| 6 |  | stoweidlem50.6 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 7 |  | stoweidlem50.7 | ⊢ 𝐶  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 8 |  | stoweidlem50.8 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 9 |  | stoweidlem50.9 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐶 ) | 
						
							| 10 |  | stoweidlem50.10 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 11 |  | stoweidlem50.11 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 12 |  | stoweidlem50.12 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 13 |  | stoweidlem50.13 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 14 |  | stoweidlem50.14 | ⊢ ( 𝜑  →  𝑈  ∈  𝐽 ) | 
						
							| 15 |  | stoweidlem50.15 | ⊢ ( 𝜑  →  𝑍  ∈  𝑈 ) | 
						
							| 16 |  | nfrab1 | ⊢ Ⅎ ℎ { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } | 
						
							| 17 | 4 16 | nfcxfr | ⊢ Ⅎ ℎ 𝑄 | 
						
							| 18 |  | nfv | ⊢ Ⅎ 𝑞 𝜑 | 
						
							| 19 | 9 7 | sseqtrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 20 | 8 | uniexd | ⊢ ( 𝜑  →  ∪  𝐽  ∈  V ) | 
						
							| 21 | 6 20 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 22 | 1 17 18 2 3 4 5 6 8 19 10 11 12 13 14 15 21 | stoweidlem46 | ⊢ ( 𝜑  →  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 ) | 
						
							| 23 |  | dfin4 | ⊢ ( 𝑇  ∩  𝑈 )  =  ( 𝑇  ∖  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 24 |  | elssuni | ⊢ ( 𝑈  ∈  𝐽  →  𝑈  ⊆  ∪  𝐽 ) | 
						
							| 25 | 14 24 | syl | ⊢ ( 𝜑  →  𝑈  ⊆  ∪  𝐽 ) | 
						
							| 26 | 25 6 | sseqtrrdi | ⊢ ( 𝜑  →  𝑈  ⊆  𝑇 ) | 
						
							| 27 |  | sseqin2 | ⊢ ( 𝑈  ⊆  𝑇  ↔  ( 𝑇  ∩  𝑈 )  =  𝑈 ) | 
						
							| 28 | 26 27 | sylib | ⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  =  𝑈 ) | 
						
							| 29 | 23 28 | eqtr3id | ⊢ ( 𝜑  →  ( 𝑇  ∖  ( 𝑇  ∖  𝑈 ) )  =  𝑈 ) | 
						
							| 30 | 29 14 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑇  ∖  ( 𝑇  ∖  𝑈 ) )  ∈  𝐽 ) | 
						
							| 31 |  | cmptop | ⊢ ( 𝐽  ∈  Comp  →  𝐽  ∈  Top ) | 
						
							| 32 | 8 31 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 33 |  | difssd | ⊢ ( 𝜑  →  ( 𝑇  ∖  𝑈 )  ⊆  𝑇 ) | 
						
							| 34 | 6 | iscld2 | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑇  ∖  𝑈 )  ⊆  𝑇 )  →  ( ( 𝑇  ∖  𝑈 )  ∈  ( Clsd ‘ 𝐽 )  ↔  ( 𝑇  ∖  ( 𝑇  ∖  𝑈 ) )  ∈  𝐽 ) ) | 
						
							| 35 | 32 33 34 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑇  ∖  𝑈 )  ∈  ( Clsd ‘ 𝐽 )  ↔  ( 𝑇  ∖  ( 𝑇  ∖  𝑈 ) )  ∈  𝐽 ) ) | 
						
							| 36 | 30 35 | mpbird | ⊢ ( 𝜑  →  ( 𝑇  ∖  𝑈 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 37 |  | cmpcld | ⊢ ( ( 𝐽  ∈  Comp  ∧  ( 𝑇  ∖  𝑈 )  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  ∈  Comp ) | 
						
							| 38 | 8 36 37 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  ∈  Comp ) | 
						
							| 39 | 6 | cmpsub | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑇  ∖  𝑈 )  ⊆  𝑇 )  →  ( ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  ∈  Comp  ↔  ∀ 𝑐  ∈  𝒫  𝐽 ( ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑐  →  ∃ 𝑢  ∈  ( 𝒫  𝑐  ∩  Fin ) ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) ) | 
						
							| 40 | 32 33 39 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  ∈  Comp  ↔  ∀ 𝑐  ∈  𝒫  𝐽 ( ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑐  →  ∃ 𝑢  ∈  ( 𝒫  𝑐  ∩  Fin ) ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) ) | 
						
							| 41 | 38 40 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  𝒫  𝐽 ( ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑐  →  ∃ 𝑢  ∈  ( 𝒫  𝑐  ∩  Fin ) ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) | 
						
							| 42 |  | ssrab2 | ⊢ { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ⊆  𝐽 | 
						
							| 43 | 5 42 | eqsstri | ⊢ 𝑊  ⊆  𝐽 | 
						
							| 44 | 5 8 | rabexd | ⊢ ( 𝜑  →  𝑊  ∈  V ) | 
						
							| 45 |  | elpwg | ⊢ ( 𝑊  ∈  V  →  ( 𝑊  ∈  𝒫  𝐽  ↔  𝑊  ⊆  𝐽 ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝜑  →  ( 𝑊  ∈  𝒫  𝐽  ↔  𝑊  ⊆  𝐽 ) ) | 
						
							| 47 | 43 46 | mpbiri | ⊢ ( 𝜑  →  𝑊  ∈  𝒫  𝐽 ) | 
						
							| 48 |  | unieq | ⊢ ( 𝑐  =  𝑊  →  ∪  𝑐  =  ∪  𝑊 ) | 
						
							| 49 | 48 | sseq2d | ⊢ ( 𝑐  =  𝑊  →  ( ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑐  ↔  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 ) ) | 
						
							| 50 |  | pweq | ⊢ ( 𝑐  =  𝑊  →  𝒫  𝑐  =  𝒫  𝑊 ) | 
						
							| 51 | 50 | ineq1d | ⊢ ( 𝑐  =  𝑊  →  ( 𝒫  𝑐  ∩  Fin )  =  ( 𝒫  𝑊  ∩  Fin ) ) | 
						
							| 52 | 51 | rexeqdv | ⊢ ( 𝑐  =  𝑊  →  ( ∃ 𝑢  ∈  ( 𝒫  𝑐  ∩  Fin ) ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢  ↔  ∃ 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) | 
						
							| 53 | 49 52 | imbi12d | ⊢ ( 𝑐  =  𝑊  →  ( ( ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑐  →  ∃ 𝑢  ∈  ( 𝒫  𝑐  ∩  Fin ) ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 )  ↔  ( ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊  →  ∃ 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) ) | 
						
							| 54 | 53 | rspccva | ⊢ ( ( ∀ 𝑐  ∈  𝒫  𝐽 ( ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑐  →  ∃ 𝑢  ∈  ( 𝒫  𝑐  ∩  Fin ) ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 )  ∧  𝑊  ∈  𝒫  𝐽 )  →  ( ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊  →  ∃ 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) | 
						
							| 55 | 41 47 54 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊  →  ∃ 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) | 
						
							| 56 | 55 | imp | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 )  →  ∃ 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) | 
						
							| 57 |  | df-rex | ⊢ ( ∃ 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢  ↔  ∃ 𝑢 ( 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin )  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) | 
						
							| 58 | 56 57 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 )  →  ∃ 𝑢 ( 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin )  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) | 
						
							| 59 |  | elinel2 | ⊢ ( 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin )  →  𝑢  ∈  Fin ) | 
						
							| 60 | 59 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 )  ∧  ( 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin )  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  →  𝑢  ∈  Fin ) | 
						
							| 61 |  | elinel1 | ⊢ ( 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin )  →  𝑢  ∈  𝒫  𝑊 ) | 
						
							| 62 | 61 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 )  ∧  ( 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin )  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  →  𝑢  ∈  𝒫  𝑊 ) | 
						
							| 63 | 62 | elpwid | ⊢ ( ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 )  ∧  ( 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin )  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  →  𝑢  ⊆  𝑊 ) | 
						
							| 64 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 )  ∧  ( 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin )  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  →  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) | 
						
							| 65 | 60 63 64 | 3jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 )  ∧  ( 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin )  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  →  ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) | 
						
							| 66 | 65 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 )  →  ( ( 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin )  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 )  →  ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) ) | 
						
							| 67 | 66 | eximdv | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 )  →  ( ∃ 𝑢 ( 𝑢  ∈  ( 𝒫  𝑊  ∩  Fin )  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 )  →  ∃ 𝑢 ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) ) | 
						
							| 68 | 58 67 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 )  →  ∃ 𝑢 ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) | 
						
							| 69 | 22 68 | mpdan | ⊢ ( 𝜑  →  ∃ 𝑢 ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) ) |