| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem46.1 | ⊢ Ⅎ 𝑡 𝑈 | 
						
							| 2 |  | stoweidlem46.2 | ⊢ Ⅎ ℎ 𝑄 | 
						
							| 3 |  | stoweidlem46.3 | ⊢ Ⅎ 𝑞 𝜑 | 
						
							| 4 |  | stoweidlem46.4 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 5 |  | stoweidlem46.5 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 6 |  | stoweidlem46.6 | ⊢ 𝑄  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } | 
						
							| 7 |  | stoweidlem46.7 | ⊢ 𝑊  =  { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } | 
						
							| 8 |  | stoweidlem46.8 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 9 |  | stoweidlem46.9 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 10 |  | stoweidlem46.10 | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 11 |  | stoweidlem46.11 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 12 |  | stoweidlem46.12 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 13 |  | stoweidlem46.13 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 14 |  | stoweidlem46.14 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 15 |  | stoweidlem46.15 | ⊢ ( 𝜑  →  𝑈  ∈  𝐽 ) | 
						
							| 16 |  | stoweidlem46.16 | ⊢ ( 𝜑  →  𝑍  ∈  𝑈 ) | 
						
							| 17 |  | stoweidlem46.17 | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 18 |  | nfv | ⊢ Ⅎ 𝑞 𝑠  ∈  ( 𝑇  ∖  𝑈 ) | 
						
							| 19 | 3 18 | nfan | ⊢ Ⅎ 𝑞 ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑡 𝑇 | 
						
							| 21 | 20 1 | nfdif | ⊢ Ⅎ 𝑡 ( 𝑇  ∖  𝑈 ) | 
						
							| 22 | 21 | nfel2 | ⊢ Ⅎ 𝑡 𝑠  ∈  ( 𝑇  ∖  𝑈 ) | 
						
							| 23 | 4 22 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 24 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝐽  ∈  Comp ) | 
						
							| 25 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝐴  ⊆  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 26 | 11 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 27 | 12 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 28 | 13 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 29 | 14 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 30 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝑈  ∈  𝐽 ) | 
						
							| 31 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝑍  ∈  𝑈 ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝑠  ∈  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 33 | 19 23 2 5 6 8 24 25 26 27 28 29 30 31 32 | stoweidlem43 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  →  ∃ ℎ ( ℎ  ∈  𝑄  ∧  0  <  ( ℎ ‘ 𝑠 ) ) ) | 
						
							| 34 |  | nfv | ⊢ Ⅎ 𝑔 ( ℎ  ∈  𝑄  ∧  0  <  ( ℎ ‘ 𝑠 ) ) | 
						
							| 35 | 2 | nfel2 | ⊢ Ⅎ ℎ 𝑔  ∈  𝑄 | 
						
							| 36 |  | nfv | ⊢ Ⅎ ℎ 0  <  ( 𝑔 ‘ 𝑠 ) | 
						
							| 37 | 35 36 | nfan | ⊢ Ⅎ ℎ ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) | 
						
							| 38 |  | eleq1 | ⊢ ( ℎ  =  𝑔  →  ( ℎ  ∈  𝑄  ↔  𝑔  ∈  𝑄 ) ) | 
						
							| 39 |  | fveq1 | ⊢ ( ℎ  =  𝑔  →  ( ℎ ‘ 𝑠 )  =  ( 𝑔 ‘ 𝑠 ) ) | 
						
							| 40 | 39 | breq2d | ⊢ ( ℎ  =  𝑔  →  ( 0  <  ( ℎ ‘ 𝑠 )  ↔  0  <  ( 𝑔 ‘ 𝑠 ) ) ) | 
						
							| 41 | 38 40 | anbi12d | ⊢ ( ℎ  =  𝑔  →  ( ( ℎ  ∈  𝑄  ∧  0  <  ( ℎ ‘ 𝑠 ) )  ↔  ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) ) ) | 
						
							| 42 | 34 37 41 | cbvexv1 | ⊢ ( ∃ ℎ ( ℎ  ∈  𝑄  ∧  0  <  ( ℎ ‘ 𝑠 ) )  ↔  ∃ 𝑔 ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) ) | 
						
							| 43 | 33 42 | sylib | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  →  ∃ 𝑔 ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) ) | 
						
							| 44 |  | rabexg | ⊢ ( 𝑇  ∈  V  →  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  V ) | 
						
							| 45 | 17 44 | syl | ⊢ ( 𝜑  →  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  V ) | 
						
							| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) )  →  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  V ) | 
						
							| 47 |  | eldifi | ⊢ ( 𝑠  ∈  ( 𝑇  ∖  𝑈 )  →  𝑠  ∈  𝑇 ) | 
						
							| 48 | 47 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) )  →  𝑠  ∈  𝑇 ) | 
						
							| 49 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) )  →  0  <  ( 𝑔 ‘ 𝑠 ) ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑡  =  𝑠  →  ( 𝑔 ‘ 𝑡 )  =  ( 𝑔 ‘ 𝑠 ) ) | 
						
							| 51 | 50 | breq2d | ⊢ ( 𝑡  =  𝑠  →  ( 0  <  ( 𝑔 ‘ 𝑡 )  ↔  0  <  ( 𝑔 ‘ 𝑠 ) ) ) | 
						
							| 52 | 51 | elrab | ⊢ ( 𝑠  ∈  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ↔  ( 𝑠  ∈  𝑇  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) ) | 
						
							| 53 | 48 49 52 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) )  →  𝑠  ∈  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) } ) | 
						
							| 54 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) )  →  𝜑 ) | 
						
							| 55 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑄 )  →  𝐴  ⊆  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 56 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑄 )  →  𝑔  ∈  𝑄 ) | 
						
							| 57 | 56 6 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑄 )  →  𝑔  ∈  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } ) | 
						
							| 58 |  | fveq1 | ⊢ ( ℎ  =  𝑔  →  ( ℎ ‘ 𝑍 )  =  ( 𝑔 ‘ 𝑍 ) ) | 
						
							| 59 | 58 | eqeq1d | ⊢ ( ℎ  =  𝑔  →  ( ( ℎ ‘ 𝑍 )  =  0  ↔  ( 𝑔 ‘ 𝑍 )  =  0 ) ) | 
						
							| 60 |  | fveq1 | ⊢ ( ℎ  =  𝑔  →  ( ℎ ‘ 𝑡 )  =  ( 𝑔 ‘ 𝑡 ) ) | 
						
							| 61 | 60 | breq2d | ⊢ ( ℎ  =  𝑔  →  ( 0  ≤  ( ℎ ‘ 𝑡 )  ↔  0  ≤  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 62 | 60 | breq1d | ⊢ ( ℎ  =  𝑔  →  ( ( ℎ ‘ 𝑡 )  ≤  1  ↔  ( 𝑔 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 63 | 61 62 | anbi12d | ⊢ ( ℎ  =  𝑔  →  ( ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( 𝑔 ‘ 𝑡 )  ∧  ( 𝑔 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 64 | 63 | ralbidv | ⊢ ( ℎ  =  𝑔  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑔 ‘ 𝑡 )  ∧  ( 𝑔 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 65 | 59 64 | anbi12d | ⊢ ( ℎ  =  𝑔  →  ( ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) )  ↔  ( ( 𝑔 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑔 ‘ 𝑡 )  ∧  ( 𝑔 ‘ 𝑡 )  ≤  1 ) ) ) ) | 
						
							| 66 | 65 | elrab | ⊢ ( 𝑔  ∈  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) }  ↔  ( 𝑔  ∈  𝐴  ∧  ( ( 𝑔 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑔 ‘ 𝑡 )  ∧  ( 𝑔 ‘ 𝑡 )  ≤  1 ) ) ) ) | 
						
							| 67 | 57 66 | sylib | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑄 )  →  ( 𝑔  ∈  𝐴  ∧  ( ( 𝑔 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑔 ‘ 𝑡 )  ∧  ( 𝑔 ‘ 𝑡 )  ≤  1 ) ) ) ) | 
						
							| 68 | 67 | simpld | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑄 )  →  𝑔  ∈  𝐴 ) | 
						
							| 69 | 55 68 | sseldd | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑄 )  →  𝑔  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 70 | 69 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) )  →  𝑔  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 71 |  | nfcv | ⊢ Ⅎ 𝑡 0 | 
						
							| 72 |  | nfcv | ⊢ Ⅎ 𝑡 𝑔 | 
						
							| 73 |  | nfv | ⊢ Ⅎ 𝑡 𝑔  ∈  ( 𝐽  Cn  𝐾 ) | 
						
							| 74 | 4 73 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑔  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 75 |  | eqid | ⊢ { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) } | 
						
							| 76 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 77 | 76 | a1i | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐽  Cn  𝐾 ) )  →  0  ∈  ℝ* ) | 
						
							| 78 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝑔  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 79 | 71 72 74 5 8 75 77 78 | rfcnpre1 | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐽  Cn  𝐾 ) )  →  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  𝐽 ) | 
						
							| 80 | 54 70 79 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) )  →  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  𝐽 ) | 
						
							| 81 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑄 )  →  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) } ) | 
						
							| 82 |  | nfv | ⊢ Ⅎ ℎ { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) } | 
						
							| 83 |  | nfcv | ⊢ Ⅎ ℎ 𝑔 | 
						
							| 84 | 60 | breq2d | ⊢ ( ℎ  =  𝑔  →  ( 0  <  ( ℎ ‘ 𝑡 )  ↔  0  <  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 85 | 84 | rabbidv | ⊢ ( ℎ  =  𝑔  →  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) } ) | 
						
							| 86 | 85 | eqeq2d | ⊢ ( ℎ  =  𝑔  →  ( { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  ↔  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) } ) ) | 
						
							| 87 | 82 83 2 86 | rspcegf | ⊢ ( ( 𝑔  ∈  𝑄  ∧  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) } )  →  ∃ ℎ  ∈  𝑄 { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) | 
						
							| 88 | 56 81 87 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑄 )  →  ∃ ℎ  ∈  𝑄 { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) | 
						
							| 89 | 88 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) )  →  ∃ ℎ  ∈  𝑄 { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) | 
						
							| 90 |  | eqeq1 | ⊢ ( 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  →  ( 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  ↔  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) ) | 
						
							| 91 | 90 | rexbidv | ⊢ ( 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  →  ( ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  ↔  ∃ ℎ  ∈  𝑄 { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) ) | 
						
							| 92 | 91 | elrab | ⊢ ( { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ↔  ( { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  𝐽  ∧  ∃ ℎ  ∈  𝑄 { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) ) | 
						
							| 93 | 80 89 92 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) )  →  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 94 | 93 7 | eleqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) )  →  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  𝑊 ) | 
						
							| 95 |  | nfcv | ⊢ Ⅎ 𝑤 { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) } | 
						
							| 96 |  | nfv | ⊢ Ⅎ 𝑤 𝑠  ∈  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) } | 
						
							| 97 |  | nfrab1 | ⊢ Ⅎ 𝑤 { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } | 
						
							| 98 | 7 97 | nfcxfr | ⊢ Ⅎ 𝑤 𝑊 | 
						
							| 99 | 98 | nfel2 | ⊢ Ⅎ 𝑤 { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  𝑊 | 
						
							| 100 | 96 99 | nfan | ⊢ Ⅎ 𝑤 ( 𝑠  ∈  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∧  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  𝑊 ) | 
						
							| 101 |  | eleq2 | ⊢ ( 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  →  ( 𝑠  ∈  𝑤  ↔  𝑠  ∈  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) } ) ) | 
						
							| 102 |  | eleq1 | ⊢ ( 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  →  ( 𝑤  ∈  𝑊  ↔  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  𝑊 ) ) | 
						
							| 103 | 101 102 | anbi12d | ⊢ ( 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  →  ( ( 𝑠  ∈  𝑤  ∧  𝑤  ∈  𝑊 )  ↔  ( 𝑠  ∈  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∧  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  𝑊 ) ) ) | 
						
							| 104 | 95 100 103 | spcegf | ⊢ ( { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  V  →  ( ( 𝑠  ∈  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∧  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  𝑊 )  →  ∃ 𝑤 ( 𝑠  ∈  𝑤  ∧  𝑤  ∈  𝑊 ) ) ) | 
						
							| 105 | 104 | imp | ⊢ ( ( { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  V  ∧  ( 𝑠  ∈  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∧  { 𝑡  ∈  𝑇  ∣  0  <  ( 𝑔 ‘ 𝑡 ) }  ∈  𝑊 ) )  →  ∃ 𝑤 ( 𝑠  ∈  𝑤  ∧  𝑤  ∈  𝑊 ) ) | 
						
							| 106 | 46 53 94 105 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑔  ∈  𝑄  ∧  0  <  ( 𝑔 ‘ 𝑠 ) ) )  →  ∃ 𝑤 ( 𝑠  ∈  𝑤  ∧  𝑤  ∈  𝑊 ) ) | 
						
							| 107 | 43 106 | exlimddv | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  →  ∃ 𝑤 ( 𝑠  ∈  𝑤  ∧  𝑤  ∈  𝑊 ) ) | 
						
							| 108 |  | nfcv | ⊢ Ⅎ 𝑤 𝑠 | 
						
							| 109 | 108 98 | elunif | ⊢ ( 𝑠  ∈  ∪  𝑊  ↔  ∃ 𝑤 ( 𝑠  ∈  𝑤  ∧  𝑤  ∈  𝑊 ) ) | 
						
							| 110 | 107 109 | sylibr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝑠  ∈  ∪  𝑊 ) | 
						
							| 111 | 110 | ex | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 𝑇  ∖  𝑈 )  →  𝑠  ∈  ∪  𝑊 ) ) | 
						
							| 112 | 111 | ssrdv | ⊢ ( 𝜑  →  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑊 ) |