Metamath Proof Explorer


Theorem stoweidlem46

Description: This lemma proves that sets U(t) as defined in Lemma 1 of BrosowskiDeutsh p. 90, are a cover of T \ U. Using this lemma, in a later theorem we will prove that a finite subcover exists. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem46.1 𝑡 𝑈
stoweidlem46.2 𝑄
stoweidlem46.3 𝑞 𝜑
stoweidlem46.4 𝑡 𝜑
stoweidlem46.5 𝐾 = ( topGen ‘ ran (,) )
stoweidlem46.6 𝑄 = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
stoweidlem46.7 𝑊 = { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
stoweidlem46.8 𝑇 = 𝐽
stoweidlem46.9 ( 𝜑𝐽 ∈ Comp )
stoweidlem46.10 ( 𝜑𝐴 ⊆ ( 𝐽 Cn 𝐾 ) )
stoweidlem46.11 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem46.12 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem46.13 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
stoweidlem46.14 ( ( 𝜑 ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
stoweidlem46.15 ( 𝜑𝑈𝐽 )
stoweidlem46.16 ( 𝜑𝑍𝑈 )
stoweidlem46.17 ( 𝜑𝑇 ∈ V )
Assertion stoweidlem46 ( 𝜑 → ( 𝑇𝑈 ) ⊆ 𝑊 )

Proof

Step Hyp Ref Expression
1 stoweidlem46.1 𝑡 𝑈
2 stoweidlem46.2 𝑄
3 stoweidlem46.3 𝑞 𝜑
4 stoweidlem46.4 𝑡 𝜑
5 stoweidlem46.5 𝐾 = ( topGen ‘ ran (,) )
6 stoweidlem46.6 𝑄 = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
7 stoweidlem46.7 𝑊 = { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
8 stoweidlem46.8 𝑇 = 𝐽
9 stoweidlem46.9 ( 𝜑𝐽 ∈ Comp )
10 stoweidlem46.10 ( 𝜑𝐴 ⊆ ( 𝐽 Cn 𝐾 ) )
11 stoweidlem46.11 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
12 stoweidlem46.12 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
13 stoweidlem46.13 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
14 stoweidlem46.14 ( ( 𝜑 ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
15 stoweidlem46.15 ( 𝜑𝑈𝐽 )
16 stoweidlem46.16 ( 𝜑𝑍𝑈 )
17 stoweidlem46.17 ( 𝜑𝑇 ∈ V )
18 nfv 𝑞 𝑠 ∈ ( 𝑇𝑈 )
19 3 18 nfan 𝑞 ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) )
20 nfcv 𝑡 𝑇
21 20 1 nfdif 𝑡 ( 𝑇𝑈 )
22 21 nfel2 𝑡 𝑠 ∈ ( 𝑇𝑈 )
23 4 22 nfan 𝑡 ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) )
24 9 adantr ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) → 𝐽 ∈ Comp )
25 10 adantr ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) → 𝐴 ⊆ ( 𝐽 Cn 𝐾 ) )
26 11 3adant1r ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ 𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
27 12 3adant1r ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ 𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
28 13 adantlr ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
29 14 adantlr ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
30 15 adantr ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) → 𝑈𝐽 )
31 16 adantr ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) → 𝑍𝑈 )
32 simpr ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) → 𝑠 ∈ ( 𝑇𝑈 ) )
33 19 23 2 5 6 8 24 25 26 27 28 29 30 31 32 stoweidlem43 ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) → ∃ ( 𝑄 ∧ 0 < ( 𝑠 ) ) )
34 nfv 𝑔 ( 𝑄 ∧ 0 < ( 𝑠 ) )
35 2 nfel2 𝑔𝑄
36 nfv 0 < ( 𝑔𝑠 )
37 35 36 nfan ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) )
38 eleq1 ( = 𝑔 → ( 𝑄𝑔𝑄 ) )
39 fveq1 ( = 𝑔 → ( 𝑠 ) = ( 𝑔𝑠 ) )
40 39 breq2d ( = 𝑔 → ( 0 < ( 𝑠 ) ↔ 0 < ( 𝑔𝑠 ) ) )
41 38 40 anbi12d ( = 𝑔 → ( ( 𝑄 ∧ 0 < ( 𝑠 ) ) ↔ ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) ) )
42 34 37 41 cbvexv1 ( ∃ ( 𝑄 ∧ 0 < ( 𝑠 ) ) ↔ ∃ 𝑔 ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) )
43 33 42 sylib ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) → ∃ 𝑔 ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) )
44 rabexg ( 𝑇 ∈ V → { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ V )
45 17 44 syl ( 𝜑 → { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ V )
46 45 ad2antrr ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) ) → { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ V )
47 eldifi ( 𝑠 ∈ ( 𝑇𝑈 ) → 𝑠𝑇 )
48 47 ad2antlr ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) ) → 𝑠𝑇 )
49 simprr ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) ) → 0 < ( 𝑔𝑠 ) )
50 fveq2 ( 𝑡 = 𝑠 → ( 𝑔𝑡 ) = ( 𝑔𝑠 ) )
51 50 breq2d ( 𝑡 = 𝑠 → ( 0 < ( 𝑔𝑡 ) ↔ 0 < ( 𝑔𝑠 ) ) )
52 51 elrab ( 𝑠 ∈ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ↔ ( 𝑠𝑇 ∧ 0 < ( 𝑔𝑠 ) ) )
53 48 49 52 sylanbrc ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) ) → 𝑠 ∈ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } )
54 simpll ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) ) → 𝜑 )
55 10 adantr ( ( 𝜑𝑔𝑄 ) → 𝐴 ⊆ ( 𝐽 Cn 𝐾 ) )
56 simpr ( ( 𝜑𝑔𝑄 ) → 𝑔𝑄 )
57 56 6 eleqtrdi ( ( 𝜑𝑔𝑄 ) → 𝑔 ∈ { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) } )
58 fveq1 ( = 𝑔 → ( 𝑍 ) = ( 𝑔𝑍 ) )
59 58 eqeq1d ( = 𝑔 → ( ( 𝑍 ) = 0 ↔ ( 𝑔𝑍 ) = 0 ) )
60 fveq1 ( = 𝑔 → ( 𝑡 ) = ( 𝑔𝑡 ) )
61 60 breq2d ( = 𝑔 → ( 0 ≤ ( 𝑡 ) ↔ 0 ≤ ( 𝑔𝑡 ) ) )
62 60 breq1d ( = 𝑔 → ( ( 𝑡 ) ≤ 1 ↔ ( 𝑔𝑡 ) ≤ 1 ) )
63 61 62 anbi12d ( = 𝑔 → ( ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑔𝑡 ) ∧ ( 𝑔𝑡 ) ≤ 1 ) ) )
64 63 ralbidv ( = 𝑔 → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑔𝑡 ) ∧ ( 𝑔𝑡 ) ≤ 1 ) ) )
65 59 64 anbi12d ( = 𝑔 → ( ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) ↔ ( ( 𝑔𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑔𝑡 ) ∧ ( 𝑔𝑡 ) ≤ 1 ) ) ) )
66 65 elrab ( 𝑔 ∈ { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) } ↔ ( 𝑔𝐴 ∧ ( ( 𝑔𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑔𝑡 ) ∧ ( 𝑔𝑡 ) ≤ 1 ) ) ) )
67 57 66 sylib ( ( 𝜑𝑔𝑄 ) → ( 𝑔𝐴 ∧ ( ( 𝑔𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑔𝑡 ) ∧ ( 𝑔𝑡 ) ≤ 1 ) ) ) )
68 67 simpld ( ( 𝜑𝑔𝑄 ) → 𝑔𝐴 )
69 55 68 sseldd ( ( 𝜑𝑔𝑄 ) → 𝑔 ∈ ( 𝐽 Cn 𝐾 ) )
70 69 ad2ant2r ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) ) → 𝑔 ∈ ( 𝐽 Cn 𝐾 ) )
71 nfcv 𝑡 0
72 nfcv 𝑡 𝑔
73 nfv 𝑡 𝑔 ∈ ( 𝐽 Cn 𝐾 )
74 4 73 nfan 𝑡 ( 𝜑𝑔 ∈ ( 𝐽 Cn 𝐾 ) )
75 eqid { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) }
76 0xr 0 ∈ ℝ*
77 76 a1i ( ( 𝜑𝑔 ∈ ( 𝐽 Cn 𝐾 ) ) → 0 ∈ ℝ* )
78 simpr ( ( 𝜑𝑔 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝑔 ∈ ( 𝐽 Cn 𝐾 ) )
79 71 72 74 5 8 75 77 78 rfcnpre1 ( ( 𝜑𝑔 ∈ ( 𝐽 Cn 𝐾 ) ) → { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ 𝐽 )
80 54 70 79 syl2anc ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) ) → { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ 𝐽 )
81 eqidd ( ( 𝜑𝑔𝑄 ) → { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } )
82 nfv { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) }
83 nfcv 𝑔
84 60 breq2d ( = 𝑔 → ( 0 < ( 𝑡 ) ↔ 0 < ( 𝑔𝑡 ) ) )
85 84 rabbidv ( = 𝑔 → { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } )
86 85 eqeq2d ( = 𝑔 → ( { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ↔ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ) )
87 82 83 2 86 rspcegf ( ( 𝑔𝑄 ∧ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ) → ∃ 𝑄 { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } )
88 56 81 87 syl2anc ( ( 𝜑𝑔𝑄 ) → ∃ 𝑄 { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } )
89 88 ad2ant2r ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) ) → ∃ 𝑄 { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } )
90 eqeq1 ( 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } → ( 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ↔ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ) )
91 90 rexbidv ( 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } → ( ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ↔ ∃ 𝑄 { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ) )
92 91 elrab ( { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ↔ ( { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ 𝐽 ∧ ∃ 𝑄 { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ) )
93 80 89 92 sylanbrc ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) ) → { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } )
94 93 7 eleqtrrdi ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) ) → { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ 𝑊 )
95 nfcv 𝑤 { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) }
96 nfv 𝑤 𝑠 ∈ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) }
97 nfrab1 𝑤 { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
98 7 97 nfcxfr 𝑤 𝑊
99 98 nfel2 𝑤 { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ 𝑊
100 96 99 nfan 𝑤 ( 𝑠 ∈ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∧ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ 𝑊 )
101 eleq2 ( 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } → ( 𝑠𝑤𝑠 ∈ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ) )
102 eleq1 ( 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } → ( 𝑤𝑊 ↔ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ 𝑊 ) )
103 101 102 anbi12d ( 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } → ( ( 𝑠𝑤𝑤𝑊 ) ↔ ( 𝑠 ∈ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∧ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ 𝑊 ) ) )
104 95 100 103 spcegf ( { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ V → ( ( 𝑠 ∈ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∧ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ 𝑊 ) → ∃ 𝑤 ( 𝑠𝑤𝑤𝑊 ) ) )
105 104 imp ( ( { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ V ∧ ( 𝑠 ∈ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∧ { 𝑡𝑇 ∣ 0 < ( 𝑔𝑡 ) } ∈ 𝑊 ) ) → ∃ 𝑤 ( 𝑠𝑤𝑤𝑊 ) )
106 46 53 94 105 syl12anc ( ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) ∧ ( 𝑔𝑄 ∧ 0 < ( 𝑔𝑠 ) ) ) → ∃ 𝑤 ( 𝑠𝑤𝑤𝑊 ) )
107 43 106 exlimddv ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) → ∃ 𝑤 ( 𝑠𝑤𝑤𝑊 ) )
108 nfcv 𝑤 𝑠
109 108 98 elunif ( 𝑠 𝑊 ↔ ∃ 𝑤 ( 𝑠𝑤𝑤𝑊 ) )
110 107 109 sylibr ( ( 𝜑𝑠 ∈ ( 𝑇𝑈 ) ) → 𝑠 𝑊 )
111 110 ex ( 𝜑 → ( 𝑠 ∈ ( 𝑇𝑈 ) → 𝑠 𝑊 ) )
112 111 ssrdv ( 𝜑 → ( 𝑇𝑈 ) ⊆ 𝑊 )