| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elunif.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
elunif.2 |
⊢ Ⅎ 𝑥 𝐵 |
| 3 |
|
eluni |
⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑦 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 5 |
1 4
|
nfel |
⊢ Ⅎ 𝑥 𝐴 ∈ 𝑦 |
| 6 |
4 2
|
nfel |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
| 7 |
5 6
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) |
| 9 |
|
eleq2w |
⊢ ( 𝑦 = 𝑥 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥 ) ) |
| 10 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
| 11 |
9 10
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 12 |
7 8 11
|
cbvexv1 |
⊢ ( ∃ 𝑦 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ) |
| 13 |
3 12
|
bitri |
⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ) |