Metamath Proof Explorer


Theorem elunif

Description: A version of eluni using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses elunif.1 _xA
elunif.2 _xB
Assertion elunif ABxAxxB

Proof

Step Hyp Ref Expression
1 elunif.1 _xA
2 elunif.2 _xB
3 eluni AByAyyB
4 nfcv _xy
5 1 4 nfel xAy
6 4 2 nfel xyB
7 5 6 nfan xAyyB
8 nfv yAxxB
9 eleq2w y=xAyAx
10 eleq1w y=xyBxB
11 9 10 anbi12d y=xAyyBAxxB
12 7 8 11 cbvexv1 yAyyBxAxxB
13 3 12 bitri ABxAxxB