Metamath Proof Explorer


Theorem stoweidlem51

Description: There exists a function x as in the proof of Lemma 2 in BrosowskiDeutsh p. 91. Here D is used to represent A in the paper, because here A is used for the subalgebra of functions. E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem51.1 i φ
stoweidlem51.2 t φ
stoweidlem51.3 w φ
stoweidlem51.4 _ w V
stoweidlem51.5 Y = h A | t T 0 h t h t 1
stoweidlem51.6 P = f Y , g Y t T f t g t
stoweidlem51.7 X = seq 1 P U M
stoweidlem51.8 F = t T i 1 M U i t
stoweidlem51.9 Z = t T seq 1 × F t M
stoweidlem51.10 φ M
stoweidlem51.11 φ W : 1 M V
stoweidlem51.12 φ U : 1 M Y
stoweidlem51.13 φ w V w T
stoweidlem51.14 φ D ran W
stoweidlem51.15 φ D T
stoweidlem51.16 φ B T
stoweidlem51.17 φ i 1 M t W i U i t < E M
stoweidlem51.18 φ i 1 M t B 1 E M < U i t
stoweidlem51.19 φ f A g A t T f t g t A
stoweidlem51.20 φ f A f : T
stoweidlem51.21 φ T V
stoweidlem51.22 φ E +
stoweidlem51.23 φ E < 1 3
Assertion stoweidlem51 φ x x A t T 0 x t x t 1 t D x t < E t B 1 E < x t

Proof

Step Hyp Ref Expression
1 stoweidlem51.1 i φ
2 stoweidlem51.2 t φ
3 stoweidlem51.3 w φ
4 stoweidlem51.4 _ w V
5 stoweidlem51.5 Y = h A | t T 0 h t h t 1
6 stoweidlem51.6 P = f Y , g Y t T f t g t
7 stoweidlem51.7 X = seq 1 P U M
8 stoweidlem51.8 F = t T i 1 M U i t
9 stoweidlem51.9 Z = t T seq 1 × F t M
10 stoweidlem51.10 φ M
11 stoweidlem51.11 φ W : 1 M V
12 stoweidlem51.12 φ U : 1 M Y
13 stoweidlem51.13 φ w V w T
14 stoweidlem51.14 φ D ran W
15 stoweidlem51.15 φ D T
16 stoweidlem51.16 φ B T
17 stoweidlem51.17 φ i 1 M t W i U i t < E M
18 stoweidlem51.18 φ i 1 M t B 1 E M < U i t
19 stoweidlem51.19 φ f A g A t T f t g t A
20 stoweidlem51.20 φ f A f : T
21 stoweidlem51.21 φ T V
22 stoweidlem51.22 φ E +
23 stoweidlem51.23 φ E < 1 3
24 ssrab2 h A | t T 0 h t h t 1 A
25 5 24 eqsstri Y A
26 1zzd φ 1
27 10 nnzd φ M
28 26 27 27 3jca φ 1 M M
29 10 nnge1d φ 1 M
30 10 nnred φ M
31 30 leidd φ M M
32 29 31 jca φ 1 M M M
33 elfz2 M 1 M 1 M M 1 M M M
34 28 32 33 sylanbrc φ M 1 M
35 eqid t T f t g t = t T f t g t
36 2 5 35 20 19 stoweidlem16 φ f Y g Y t T f t g t Y
37 6 7 34 12 36 21 fmulcl φ X Y
38 25 37 sseldi φ X A
39 5 eleq2i X Y X h A | t T 0 h t h t 1
40 nfcv _ h 1
41 nfrab1 _ h h A | t T 0 h t h t 1
42 5 41 nfcxfr _ h Y
43 nfcv _ h t T f t g t
44 42 42 43 nfmpo _ h f Y , g Y t T f t g t
45 6 44 nfcxfr _ h P
46 nfcv _ h U
47 40 45 46 nfseq _ h seq 1 P U
48 nfcv _ h M
49 47 48 nffv _ h seq 1 P U M
50 7 49 nfcxfr _ h X
51 nfcv _ h A
52 nfcv _ h T
53 nfcv _ h 0
54 nfcv _ h
55 nfcv _ h t
56 50 55 nffv _ h X t
57 53 54 56 nfbr h 0 X t
58 56 54 40 nfbr h X t 1
59 57 58 nfan h 0 X t X t 1
60 52 59 nfralw h t T 0 X t X t 1
61 nfcv _ t 1
62 nfra1 t t T 0 h t h t 1
63 nfcv _ t A
64 62 63 nfrabw _ t h A | t T 0 h t h t 1
65 5 64 nfcxfr _ t Y
66 nfmpt1 _ t t T f t g t
67 65 65 66 nfmpo _ t f Y , g Y t T f t g t
68 6 67 nfcxfr _ t P
69 nfcv _ t U
70 61 68 69 nfseq _ t seq 1 P U
71 nfcv _ t M
72 70 71 nffv _ t seq 1 P U M
73 7 72 nfcxfr _ t X
74 73 nfeq2 t h = X
75 fveq1 h = X h t = X t
76 75 breq2d h = X 0 h t 0 X t
77 75 breq1d h = X h t 1 X t 1
78 76 77 anbi12d h = X 0 h t h t 1 0 X t X t 1
79 74 78 ralbid h = X t T 0 h t h t 1 t T 0 X t X t 1
80 50 51 60 79 elrabf X h A | t T 0 h t h t 1 X A t T 0 X t X t 1
81 39 80 bitri X Y X A t T 0 X t X t 1
82 37 81 sylib φ X A t T 0 X t X t 1
83 82 simprd φ t T 0 X t X t 1
84 nfv t i 1 M
85 2 84 nfan t φ i 1 M
86 12 ffvelrnda φ i 1 M U i Y
87 fveq1 h = U i h t = U i t
88 87 breq2d h = U i 0 h t 0 U i t
89 87 breq1d h = U i h t 1 U i t 1
90 88 89 anbi12d h = U i 0 h t h t 1 0 U i t U i t 1
91 90 ralbidv h = U i t T 0 h t h t 1 t T 0 U i t U i t 1
92 91 5 elrab2 U i Y U i A t T 0 U i t U i t 1
93 92 simplbi U i Y U i A
94 86 93 syl φ i 1 M U i A
95 eleq1 f = U i f A U i A
96 95 anbi2d f = U i φ f A φ U i A
97 feq1 f = U i f : T U i : T
98 96 97 imbi12d f = U i φ f A f : T φ U i A U i : T
99 20 a1i f A φ f A f : T
100 98 99 vtoclga U i A φ U i A U i : T
101 100 anabsi7 φ U i A U i : T
102 94 101 syldan φ i 1 M U i : T
103 102 adantr φ i 1 M t W i U i : T
104 11 ffvelrnda φ i 1 M W i V
105 simpl φ i 1 M φ
106 105 104 jca φ i 1 M φ W i V
107 4 nfel2 w W i V
108 3 107 nfan w φ W i V
109 nfv w W i T
110 108 109 nfim w φ W i V W i T
111 eleq1 w = W i w V W i V
112 111 anbi2d w = W i φ w V φ W i V
113 sseq1 w = W i w T W i T
114 112 113 imbi12d w = W i φ w V w T φ W i V W i T
115 110 114 13 vtoclg1f W i V φ W i V W i T
116 104 106 115 sylc φ i 1 M W i T
117 116 sselda φ i 1 M t W i t T
118 103 117 ffvelrnd φ i 1 M t W i U i t
119 22 rpred φ E
120 119 ad2antrr φ i 1 M t W i E
121 30 ad2antrr φ i 1 M t W i M
122 10 nnne0d φ M 0
123 122 ad2antrr φ i 1 M t W i M 0
124 120 121 123 redivcld φ i 1 M t W i E M
125 17 r19.21bi φ i 1 M t W i U i t < E M
126 1red φ 1
127 0lt1 0 < 1
128 127 a1i φ 0 < 1
129 10 nngt0d φ 0 < M
130 22 rpregt0d φ E 0 < E
131 lediv2 1 0 < 1 M 0 < M E 0 < E 1 M E M E 1
132 126 128 30 129 130 131 syl221anc φ 1 M E M E 1
133 29 132 mpbid φ E M E 1
134 22 rpcnd φ E
135 134 div1d φ E 1 = E
136 133 135 breqtrd φ E M E
137 136 ad2antrr φ i 1 M t W i E M E
138 118 124 120 125 137 ltletrd φ i 1 M t W i U i t < E
139 138 ex φ i 1 M t W i U i t < E
140 85 139 ralrimi φ i 1 M t W i U i t < E
141 1 2 5 6 7 8 9 10 11 12 14 15 140 21 20 19 22 stoweidlem48 φ t D X t < E
142 25 sseli f Y f A
143 142 20 sylan2 φ f Y f : T
144 1 2 65 6 7 8 9 10 12 18 22 23 143 36 21 16 stoweidlem42 φ t B 1 E < X t
145 83 141 144 3jca φ t T 0 X t X t 1 t D X t < E t B 1 E < X t
146 38 145 jca φ X A t T 0 X t X t 1 t D X t < E t B 1 E < X t
147 eleq1 x = X x A X A
148 73 nfeq2 t x = X
149 fveq1 x = X x t = X t
150 149 breq2d x = X 0 x t 0 X t
151 149 breq1d x = X x t 1 X t 1
152 150 151 anbi12d x = X 0 x t x t 1 0 X t X t 1
153 148 152 ralbid x = X t T 0 x t x t 1 t T 0 X t X t 1
154 149 breq1d x = X x t < E X t < E
155 148 154 ralbid x = X t D x t < E t D X t < E
156 149 breq2d x = X 1 E < x t 1 E < X t
157 148 156 ralbid x = X t B 1 E < x t t B 1 E < X t
158 153 155 157 3anbi123d x = X t T 0 x t x t 1 t D x t < E t B 1 E < x t t T 0 X t X t 1 t D X t < E t B 1 E < X t
159 147 158 anbi12d x = X x A t T 0 x t x t 1 t D x t < E t B 1 E < x t X A t T 0 X t X t 1 t D X t < E t B 1 E < X t
160 159 spcegv X A X A t T 0 X t X t 1 t D X t < E t B 1 E < X t x x A t T 0 x t x t 1 t D x t < E t B 1 E < x t
161 38 146 160 sylc φ x x A t T 0 x t x t 1 t D x t < E t B 1 E < x t