Metamath Proof Explorer


Theorem stoweidlem52

Description: There exists a neighborhood V as in Lemma 1 of BrosowskiDeutsh p. 90. Here Z is used to represent t_0 in the paper, and v is used to represent V in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem52.1 _tU
stoweidlem52.2 tφ
stoweidlem52.3 _tP
stoweidlem52.4 K=topGenran.
stoweidlem52.5 V=tT|Pt<D2
stoweidlem52.7 T=J
stoweidlem52.8 C=JCnK
stoweidlem52.9 φAC
stoweidlem52.10 φfAgAtTft+gtA
stoweidlem52.11 φfAgAtTftgtA
stoweidlem52.12 φatTaA
stoweidlem52.13 φD+
stoweidlem52.14 φD<1
stoweidlem52.15 φUJ
stoweidlem52.16 φZU
stoweidlem52.17 φPA
stoweidlem52.18 φtT0PtPt1
stoweidlem52.19 φPZ=0
stoweidlem52.20 φtTUDPt
Assertion stoweidlem52 φvJZvvUe+xAtT0xtxt1tvxt<etTU1e<xt

Proof

Step Hyp Ref Expression
1 stoweidlem52.1 _tU
2 stoweidlem52.2 tφ
3 stoweidlem52.3 _tP
4 stoweidlem52.4 K=topGenran.
5 stoweidlem52.5 V=tT|Pt<D2
6 stoweidlem52.7 T=J
7 stoweidlem52.8 C=JCnK
8 stoweidlem52.9 φAC
9 stoweidlem52.10 φfAgAtTft+gtA
10 stoweidlem52.11 φfAgAtTftgtA
11 stoweidlem52.12 φatTaA
12 stoweidlem52.13 φD+
13 stoweidlem52.14 φD<1
14 stoweidlem52.15 φUJ
15 stoweidlem52.16 φZU
16 stoweidlem52.17 φPA
17 stoweidlem52.18 φtT0PtPt1
18 stoweidlem52.19 φPZ=0
19 stoweidlem52.20 φtTUDPt
20 nfcv _tD2
21 12 rpred φD
22 21 rehalfcld φD2
23 22 rexrd φD2*
24 8 7 sseqtrdi φAJCnK
25 24 16 sseldd φPJCnK
26 20 3 2 4 6 5 23 25 rfcnpre2 φVJ
27 elssuni UJUJ
28 14 27 syl φUJ
29 28 6 sseqtrrdi φUT
30 29 15 sseldd φZT
31 2re 2
32 31 a1i φ2
33 12 rpgt0d φ0<D
34 2pos 0<2
35 34 a1i φ0<2
36 21 32 33 35 divgt0d φ0<D2
37 18 36 eqbrtrd φPZ<D2
38 nfcv _tZ
39 nfcv _tT
40 3 38 nffv _tPZ
41 nfcv _t<
42 40 41 20 nfbr tPZ<D2
43 fveq2 t=ZPt=PZ
44 43 breq1d t=ZPt<D2PZ<D2
45 38 39 42 44 elrabf ZtT|Pt<D2ZTPZ<D2
46 30 37 45 sylanbrc φZtT|Pt<D2
47 46 5 eleqtrrdi φZV
48 nfrab1 _ttT|Pt<D2
49 5 48 nfcxfr _tV
50 8 16 sseldd φPC
51 4 6 7 50 fcnre φP:T
52 51 adantr φtVP:T
53 5 reqabi tVtTPt<D2
54 53 biimpi tVtTPt<D2
55 54 adantl φtVtTPt<D2
56 55 simpld φtVtT
57 52 56 ffvelcdmd φtVPt
58 22 adantr φtVD2
59 21 adantr φtVD
60 55 simprd φtVPt<D2
61 halfpos D0<DD2<D
62 21 61 syl φ0<DD2<D
63 33 62 mpbid φD2<D
64 63 adantr φtVD2<D
65 57 58 59 60 64 lttrd φtVPt<D
66 65 adantr φtV¬tUPt<D
67 21 ad2antrr φtV¬tUD
68 57 adantr φtV¬tUPt
69 19 ad2antrr φtV¬tUtTUDPt
70 56 anim1i φtV¬tUtT¬tU
71 eldif tTUtT¬tU
72 70 71 sylibr φtV¬tUtTU
73 rsp tTUDPttTUDPt
74 69 72 73 sylc φtV¬tUDPt
75 67 68 74 lensymd φtV¬tU¬Pt<D
76 66 75 condan φtVtU
77 76 ex φtVtU
78 2 49 1 77 ssrd φVU
79 nfv te+
80 2 79 nfan tφe+
81 nfv tyA
82 80 81 nfan tφe+yA
83 nfra1 ttT0ytyt1
84 nfra1 ttV1e<yt
85 nfra1 ttTUyt<e
86 83 84 85 nf3an ttT0ytyt1tV1e<yttTUyt<e
87 82 86 nfan tφe+yAtT0ytyt1tV1e<yttTUyt<e
88 eqid tT1yt=tT1yt
89 eqid tT1=tT1
90 ssrab2 tT|Pt<D2T
91 5 90 eqsstri VT
92 simplr φe+yAtT0ytyt1tV1e<yttTUyt<eyA
93 simplll φe+yAtT0ytyt1tV1e<yttTUyt<eφ
94 8 sselda φyAyC
95 4 6 7 94 fcnre φyAy:T
96 93 92 95 syl2anc φe+yAtT0ytyt1tV1e<yttTUyt<ey:T
97 8 sselda φfAfC
98 4 6 7 97 fcnre φfAf:T
99 93 98 sylan φe+yAtT0ytyt1tV1e<yttTUyt<efAf:T
100 93 9 syl3an1 φe+yAtT0ytyt1tV1e<yttTUyt<efAgAtTft+gtA
101 93 10 syl3an1 φe+yAtT0ytyt1tV1e<yttTUyt<efAgAtTftgtA
102 93 11 sylan φe+yAtT0ytyt1tV1e<yttTUyt<eatTaA
103 simpllr φe+yAtT0ytyt1tV1e<yttTUyt<ee+
104 simpr1 φe+yAtT0ytyt1tV1e<yttTUyt<etT0ytyt1
105 simpr2 φe+yAtT0ytyt1tV1e<yttTUyt<etV1e<yt
106 simpr3 φe+yAtT0ytyt1tV1e<yttTUyt<etTUyt<e
107 87 88 89 91 92 96 99 100 101 102 103 104 105 106 stoweidlem41 φe+yAtT0ytyt1tV1e<yttTUyt<exAtT0xtxt1tVxt<etTU1e<xt
108 12 adantr φe+D+
109 13 adantr φe+D<1
110 16 adantr φe+PA
111 51 adantr φe+P:T
112 17 adantr φe+tT0PtPt1
113 19 adantr φe+tTUDPt
114 98 adantlr φe+fAf:T
115 9 3adant1r φe+fAgAtTft+gtA
116 10 3adant1r φe+fAgAtTftgtA
117 11 adantlr φe+atTaA
118 simpr φe+e+
119 3 80 5 108 109 110 111 112 113 114 115 116 117 118 stoweidlem49 φe+yAtT0ytyt1tV1e<yttTUyt<e
120 107 119 r19.29a φe+xAtT0xtxt1tVxt<etTU1e<xt
121 120 ralrimiva φe+xAtT0xtxt1tVxt<etTU1e<xt
122 47 78 121 jca31 φZVVUe+xAtT0xtxt1tVxt<etTU1e<xt
123 eleq2 v=VZvZV
124 sseq1 v=VvUVU
125 123 124 anbi12d v=VZvvUZVVU
126 nfcv _tv
127 126 49 raleqf v=Vtvxt<etVxt<e
128 127 3anbi2d v=VtT0xtxt1tvxt<etTU1e<xttT0xtxt1tVxt<etTU1e<xt
129 128 rexbidv v=VxAtT0xtxt1tvxt<etTU1e<xtxAtT0xtxt1tVxt<etTU1e<xt
130 129 ralbidv v=Ve+xAtT0xtxt1tvxt<etTU1e<xte+xAtT0xtxt1tVxt<etTU1e<xt
131 125 130 anbi12d v=VZvvUe+xAtT0xtxt1tvxt<etTU1e<xtZVVUe+xAtT0xtxt1tVxt<etTU1e<xt
132 131 rspcev VJZVVUe+xAtT0xtxt1tVxt<etTU1e<xtvJZvvUe+xAtT0xtxt1tvxt<etTU1e<xt
133 26 122 132 syl2anc φvJZvvUe+xAtT0xtxt1tvxt<etTU1e<xt