Description: There exists a neighborhood V as in Lemma 1 of BrosowskiDeutsh p. 90. Here Z is used to represent t_0 in the paper, and v is used to represent V in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem52.1 | |
|
stoweidlem52.2 | |
||
stoweidlem52.3 | |
||
stoweidlem52.4 | |
||
stoweidlem52.5 | |
||
stoweidlem52.7 | |
||
stoweidlem52.8 | |
||
stoweidlem52.9 | |
||
stoweidlem52.10 | |
||
stoweidlem52.11 | |
||
stoweidlem52.12 | |
||
stoweidlem52.13 | |
||
stoweidlem52.14 | |
||
stoweidlem52.15 | |
||
stoweidlem52.16 | |
||
stoweidlem52.17 | |
||
stoweidlem52.18 | |
||
stoweidlem52.19 | |
||
stoweidlem52.20 | |
||
Assertion | stoweidlem52 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem52.1 | |
|
2 | stoweidlem52.2 | |
|
3 | stoweidlem52.3 | |
|
4 | stoweidlem52.4 | |
|
5 | stoweidlem52.5 | |
|
6 | stoweidlem52.7 | |
|
7 | stoweidlem52.8 | |
|
8 | stoweidlem52.9 | |
|
9 | stoweidlem52.10 | |
|
10 | stoweidlem52.11 | |
|
11 | stoweidlem52.12 | |
|
12 | stoweidlem52.13 | |
|
13 | stoweidlem52.14 | |
|
14 | stoweidlem52.15 | |
|
15 | stoweidlem52.16 | |
|
16 | stoweidlem52.17 | |
|
17 | stoweidlem52.18 | |
|
18 | stoweidlem52.19 | |
|
19 | stoweidlem52.20 | |
|
20 | nfcv | |
|
21 | 12 | rpred | |
22 | 21 | rehalfcld | |
23 | 22 | rexrd | |
24 | 8 7 | sseqtrdi | |
25 | 24 16 | sseldd | |
26 | 20 3 2 4 6 5 23 25 | rfcnpre2 | |
27 | elssuni | |
|
28 | 14 27 | syl | |
29 | 28 6 | sseqtrrdi | |
30 | 29 15 | sseldd | |
31 | 2re | |
|
32 | 31 | a1i | |
33 | 12 | rpgt0d | |
34 | 2pos | |
|
35 | 34 | a1i | |
36 | 21 32 33 35 | divgt0d | |
37 | 18 36 | eqbrtrd | |
38 | nfcv | |
|
39 | nfcv | |
|
40 | 3 38 | nffv | |
41 | nfcv | |
|
42 | 40 41 20 | nfbr | |
43 | fveq2 | |
|
44 | 43 | breq1d | |
45 | 38 39 42 44 | elrabf | |
46 | 30 37 45 | sylanbrc | |
47 | 46 5 | eleqtrrdi | |
48 | nfrab1 | |
|
49 | 5 48 | nfcxfr | |
50 | 8 16 | sseldd | |
51 | 4 6 7 50 | fcnre | |
52 | 51 | adantr | |
53 | 5 | reqabi | |
54 | 53 | biimpi | |
55 | 54 | adantl | |
56 | 55 | simpld | |
57 | 52 56 | ffvelcdmd | |
58 | 22 | adantr | |
59 | 21 | adantr | |
60 | 55 | simprd | |
61 | halfpos | |
|
62 | 21 61 | syl | |
63 | 33 62 | mpbid | |
64 | 63 | adantr | |
65 | 57 58 59 60 64 | lttrd | |
66 | 65 | adantr | |
67 | 21 | ad2antrr | |
68 | 57 | adantr | |
69 | 19 | ad2antrr | |
70 | 56 | anim1i | |
71 | eldif | |
|
72 | 70 71 | sylibr | |
73 | rsp | |
|
74 | 69 72 73 | sylc | |
75 | 67 68 74 | lensymd | |
76 | 66 75 | condan | |
77 | 76 | ex | |
78 | 2 49 1 77 | ssrd | |
79 | nfv | |
|
80 | 2 79 | nfan | |
81 | nfv | |
|
82 | 80 81 | nfan | |
83 | nfra1 | |
|
84 | nfra1 | |
|
85 | nfra1 | |
|
86 | 83 84 85 | nf3an | |
87 | 82 86 | nfan | |
88 | eqid | |
|
89 | eqid | |
|
90 | ssrab2 | |
|
91 | 5 90 | eqsstri | |
92 | simplr | |
|
93 | simplll | |
|
94 | 8 | sselda | |
95 | 4 6 7 94 | fcnre | |
96 | 93 92 95 | syl2anc | |
97 | 8 | sselda | |
98 | 4 6 7 97 | fcnre | |
99 | 93 98 | sylan | |
100 | 93 9 | syl3an1 | |
101 | 93 10 | syl3an1 | |
102 | 93 11 | sylan | |
103 | simpllr | |
|
104 | simpr1 | |
|
105 | simpr2 | |
|
106 | simpr3 | |
|
107 | 87 88 89 91 92 96 99 100 101 102 103 104 105 106 | stoweidlem41 | |
108 | 12 | adantr | |
109 | 13 | adantr | |
110 | 16 | adantr | |
111 | 51 | adantr | |
112 | 17 | adantr | |
113 | 19 | adantr | |
114 | 98 | adantlr | |
115 | 9 | 3adant1r | |
116 | 10 | 3adant1r | |
117 | 11 | adantlr | |
118 | simpr | |
|
119 | 3 80 5 108 109 110 111 112 113 114 115 116 117 118 | stoweidlem49 | |
120 | 107 119 | r19.29a | |
121 | 120 | ralrimiva | |
122 | 47 78 121 | jca31 | |
123 | eleq2 | |
|
124 | sseq1 | |
|
125 | 123 124 | anbi12d | |
126 | nfcv | |
|
127 | 126 49 | raleqf | |
128 | 127 | 3anbi2d | |
129 | 128 | rexbidv | |
130 | 129 | ralbidv | |
131 | 125 130 | anbi12d | |
132 | 131 | rspcev | |
133 | 26 122 132 | syl2anc | |