| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem52.1 |
|
| 2 |
|
stoweidlem52.2 |
|
| 3 |
|
stoweidlem52.3 |
|
| 4 |
|
stoweidlem52.4 |
|
| 5 |
|
stoweidlem52.5 |
|
| 6 |
|
stoweidlem52.7 |
|
| 7 |
|
stoweidlem52.8 |
|
| 8 |
|
stoweidlem52.9 |
|
| 9 |
|
stoweidlem52.10 |
|
| 10 |
|
stoweidlem52.11 |
|
| 11 |
|
stoweidlem52.12 |
|
| 12 |
|
stoweidlem52.13 |
|
| 13 |
|
stoweidlem52.14 |
|
| 14 |
|
stoweidlem52.15 |
|
| 15 |
|
stoweidlem52.16 |
|
| 16 |
|
stoweidlem52.17 |
|
| 17 |
|
stoweidlem52.18 |
|
| 18 |
|
stoweidlem52.19 |
|
| 19 |
|
stoweidlem52.20 |
|
| 20 |
|
nfcv |
|
| 21 |
12
|
rpred |
|
| 22 |
21
|
rehalfcld |
|
| 23 |
22
|
rexrd |
|
| 24 |
8 7
|
sseqtrdi |
|
| 25 |
24 16
|
sseldd |
|
| 26 |
20 3 2 4 6 5 23 25
|
rfcnpre2 |
|
| 27 |
|
elssuni |
|
| 28 |
14 27
|
syl |
|
| 29 |
28 6
|
sseqtrrdi |
|
| 30 |
29 15
|
sseldd |
|
| 31 |
|
2re |
|
| 32 |
31
|
a1i |
|
| 33 |
12
|
rpgt0d |
|
| 34 |
|
2pos |
|
| 35 |
34
|
a1i |
|
| 36 |
21 32 33 35
|
divgt0d |
|
| 37 |
18 36
|
eqbrtrd |
|
| 38 |
|
nfcv |
|
| 39 |
|
nfcv |
|
| 40 |
3 38
|
nffv |
|
| 41 |
|
nfcv |
|
| 42 |
40 41 20
|
nfbr |
|
| 43 |
|
fveq2 |
|
| 44 |
43
|
breq1d |
|
| 45 |
38 39 42 44
|
elrabf |
|
| 46 |
30 37 45
|
sylanbrc |
|
| 47 |
46 5
|
eleqtrrdi |
|
| 48 |
|
nfrab1 |
|
| 49 |
5 48
|
nfcxfr |
|
| 50 |
8 16
|
sseldd |
|
| 51 |
4 6 7 50
|
fcnre |
|
| 52 |
51
|
adantr |
|
| 53 |
5
|
reqabi |
|
| 54 |
53
|
biimpi |
|
| 55 |
54
|
adantl |
|
| 56 |
55
|
simpld |
|
| 57 |
52 56
|
ffvelcdmd |
|
| 58 |
22
|
adantr |
|
| 59 |
21
|
adantr |
|
| 60 |
55
|
simprd |
|
| 61 |
|
halfpos |
|
| 62 |
21 61
|
syl |
|
| 63 |
33 62
|
mpbid |
|
| 64 |
63
|
adantr |
|
| 65 |
57 58 59 60 64
|
lttrd |
|
| 66 |
65
|
adantr |
|
| 67 |
21
|
ad2antrr |
|
| 68 |
57
|
adantr |
|
| 69 |
19
|
ad2antrr |
|
| 70 |
56
|
anim1i |
|
| 71 |
|
eldif |
|
| 72 |
70 71
|
sylibr |
|
| 73 |
|
rsp |
|
| 74 |
69 72 73
|
sylc |
|
| 75 |
67 68 74
|
lensymd |
|
| 76 |
66 75
|
condan |
|
| 77 |
76
|
ex |
|
| 78 |
2 49 1 77
|
ssrd |
|
| 79 |
|
nfv |
|
| 80 |
2 79
|
nfan |
|
| 81 |
|
nfv |
|
| 82 |
80 81
|
nfan |
|
| 83 |
|
nfra1 |
|
| 84 |
|
nfra1 |
|
| 85 |
|
nfra1 |
|
| 86 |
83 84 85
|
nf3an |
|
| 87 |
82 86
|
nfan |
|
| 88 |
|
eqid |
|
| 89 |
|
eqid |
|
| 90 |
|
ssrab2 |
|
| 91 |
5 90
|
eqsstri |
|
| 92 |
|
simplr |
|
| 93 |
|
simplll |
|
| 94 |
8
|
sselda |
|
| 95 |
4 6 7 94
|
fcnre |
|
| 96 |
93 92 95
|
syl2anc |
|
| 97 |
8
|
sselda |
|
| 98 |
4 6 7 97
|
fcnre |
|
| 99 |
93 98
|
sylan |
|
| 100 |
93 9
|
syl3an1 |
|
| 101 |
93 10
|
syl3an1 |
|
| 102 |
93 11
|
sylan |
|
| 103 |
|
simpllr |
|
| 104 |
|
simpr1 |
|
| 105 |
|
simpr2 |
|
| 106 |
|
simpr3 |
|
| 107 |
87 88 89 91 92 96 99 100 101 102 103 104 105 106
|
stoweidlem41 |
|
| 108 |
12
|
adantr |
|
| 109 |
13
|
adantr |
|
| 110 |
16
|
adantr |
|
| 111 |
51
|
adantr |
|
| 112 |
17
|
adantr |
|
| 113 |
19
|
adantr |
|
| 114 |
98
|
adantlr |
|
| 115 |
9
|
3adant1r |
|
| 116 |
10
|
3adant1r |
|
| 117 |
11
|
adantlr |
|
| 118 |
|
simpr |
|
| 119 |
3 80 5 108 109 110 111 112 113 114 115 116 117 118
|
stoweidlem49 |
|
| 120 |
107 119
|
r19.29a |
|
| 121 |
120
|
ralrimiva |
|
| 122 |
47 78 121
|
jca31 |
|
| 123 |
|
eleq2 |
|
| 124 |
|
sseq1 |
|
| 125 |
123 124
|
anbi12d |
|
| 126 |
|
nfcv |
|
| 127 |
126 49
|
raleqf |
|
| 128 |
127
|
3anbi2d |
|
| 129 |
128
|
rexbidv |
|
| 130 |
129
|
ralbidv |
|
| 131 |
125 130
|
anbi12d |
|
| 132 |
131
|
rspcev |
|
| 133 |
26 122 132
|
syl2anc |
|