| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem52.1 | ⊢ Ⅎ 𝑡 𝑈 | 
						
							| 2 |  | stoweidlem52.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem52.3 | ⊢ Ⅎ 𝑡 𝑃 | 
						
							| 4 |  | stoweidlem52.4 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 5 |  | stoweidlem52.5 | ⊢ 𝑉  =  { 𝑡  ∈  𝑇  ∣  ( 𝑃 ‘ 𝑡 )  <  ( 𝐷  /  2 ) } | 
						
							| 6 |  | stoweidlem52.7 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 7 |  | stoweidlem52.8 | ⊢ 𝐶  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 8 |  | stoweidlem52.9 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐶 ) | 
						
							| 9 |  | stoweidlem52.10 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 10 |  | stoweidlem52.11 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 11 |  | stoweidlem52.12 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑎 )  ∈  𝐴 ) | 
						
							| 12 |  | stoweidlem52.13 | ⊢ ( 𝜑  →  𝐷  ∈  ℝ+ ) | 
						
							| 13 |  | stoweidlem52.14 | ⊢ ( 𝜑  →  𝐷  <  1 ) | 
						
							| 14 |  | stoweidlem52.15 | ⊢ ( 𝜑  →  𝑈  ∈  𝐽 ) | 
						
							| 15 |  | stoweidlem52.16 | ⊢ ( 𝜑  →  𝑍  ∈  𝑈 ) | 
						
							| 16 |  | stoweidlem52.17 | ⊢ ( 𝜑  →  𝑃  ∈  𝐴 ) | 
						
							| 17 |  | stoweidlem52.18 | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 18 |  | stoweidlem52.19 | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑍 )  =  0 ) | 
						
							| 19 |  | stoweidlem52.20 | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑡 ( 𝐷  /  2 ) | 
						
							| 21 | 12 | rpred | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 22 | 21 | rehalfcld | ⊢ ( 𝜑  →  ( 𝐷  /  2 )  ∈  ℝ ) | 
						
							| 23 | 22 | rexrd | ⊢ ( 𝜑  →  ( 𝐷  /  2 )  ∈  ℝ* ) | 
						
							| 24 | 8 7 | sseqtrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 25 | 24 16 | sseldd | ⊢ ( 𝜑  →  𝑃  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 26 | 20 3 2 4 6 5 23 25 | rfcnpre2 | ⊢ ( 𝜑  →  𝑉  ∈  𝐽 ) | 
						
							| 27 |  | elssuni | ⊢ ( 𝑈  ∈  𝐽  →  𝑈  ⊆  ∪  𝐽 ) | 
						
							| 28 | 14 27 | syl | ⊢ ( 𝜑  →  𝑈  ⊆  ∪  𝐽 ) | 
						
							| 29 | 28 6 | sseqtrrdi | ⊢ ( 𝜑  →  𝑈  ⊆  𝑇 ) | 
						
							| 30 | 29 15 | sseldd | ⊢ ( 𝜑  →  𝑍  ∈  𝑇 ) | 
						
							| 31 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 32 | 31 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 33 | 12 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝐷 ) | 
						
							| 34 |  | 2pos | ⊢ 0  <  2 | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  0  <  2 ) | 
						
							| 36 | 21 32 33 35 | divgt0d | ⊢ ( 𝜑  →  0  <  ( 𝐷  /  2 ) ) | 
						
							| 37 | 18 36 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑍 )  <  ( 𝐷  /  2 ) ) | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑡 𝑍 | 
						
							| 39 |  | nfcv | ⊢ Ⅎ 𝑡 𝑇 | 
						
							| 40 | 3 38 | nffv | ⊢ Ⅎ 𝑡 ( 𝑃 ‘ 𝑍 ) | 
						
							| 41 |  | nfcv | ⊢ Ⅎ 𝑡  < | 
						
							| 42 | 40 41 20 | nfbr | ⊢ Ⅎ 𝑡 ( 𝑃 ‘ 𝑍 )  <  ( 𝐷  /  2 ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑡  =  𝑍  →  ( 𝑃 ‘ 𝑡 )  =  ( 𝑃 ‘ 𝑍 ) ) | 
						
							| 44 | 43 | breq1d | ⊢ ( 𝑡  =  𝑍  →  ( ( 𝑃 ‘ 𝑡 )  <  ( 𝐷  /  2 )  ↔  ( 𝑃 ‘ 𝑍 )  <  ( 𝐷  /  2 ) ) ) | 
						
							| 45 | 38 39 42 44 | elrabf | ⊢ ( 𝑍  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝑃 ‘ 𝑡 )  <  ( 𝐷  /  2 ) }  ↔  ( 𝑍  ∈  𝑇  ∧  ( 𝑃 ‘ 𝑍 )  <  ( 𝐷  /  2 ) ) ) | 
						
							| 46 | 30 37 45 | sylanbrc | ⊢ ( 𝜑  →  𝑍  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝑃 ‘ 𝑡 )  <  ( 𝐷  /  2 ) } ) | 
						
							| 47 | 46 5 | eleqtrrdi | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 48 |  | nfrab1 | ⊢ Ⅎ 𝑡 { 𝑡  ∈  𝑇  ∣  ( 𝑃 ‘ 𝑡 )  <  ( 𝐷  /  2 ) } | 
						
							| 49 | 5 48 | nfcxfr | ⊢ Ⅎ 𝑡 𝑉 | 
						
							| 50 | 8 16 | sseldd | ⊢ ( 𝜑  →  𝑃  ∈  𝐶 ) | 
						
							| 51 | 4 6 7 50 | fcnre | ⊢ ( 𝜑  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 53 | 5 | reqabi | ⊢ ( 𝑡  ∈  𝑉  ↔  ( 𝑡  ∈  𝑇  ∧  ( 𝑃 ‘ 𝑡 )  <  ( 𝐷  /  2 ) ) ) | 
						
							| 54 | 53 | biimpi | ⊢ ( 𝑡  ∈  𝑉  →  ( 𝑡  ∈  𝑇  ∧  ( 𝑃 ‘ 𝑡 )  <  ( 𝐷  /  2 ) ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  →  ( 𝑡  ∈  𝑇  ∧  ( 𝑃 ‘ 𝑡 )  <  ( 𝐷  /  2 ) ) ) | 
						
							| 56 | 55 | simpld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  →  𝑡  ∈  𝑇 ) | 
						
							| 57 | 52 56 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  →  ( 𝑃 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 58 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  →  ( 𝐷  /  2 )  ∈  ℝ ) | 
						
							| 59 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  →  𝐷  ∈  ℝ ) | 
						
							| 60 | 55 | simprd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  →  ( 𝑃 ‘ 𝑡 )  <  ( 𝐷  /  2 ) ) | 
						
							| 61 |  | halfpos | ⊢ ( 𝐷  ∈  ℝ  →  ( 0  <  𝐷  ↔  ( 𝐷  /  2 )  <  𝐷 ) ) | 
						
							| 62 | 21 61 | syl | ⊢ ( 𝜑  →  ( 0  <  𝐷  ↔  ( 𝐷  /  2 )  <  𝐷 ) ) | 
						
							| 63 | 33 62 | mpbid | ⊢ ( 𝜑  →  ( 𝐷  /  2 )  <  𝐷 ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  →  ( 𝐷  /  2 )  <  𝐷 ) | 
						
							| 65 | 57 58 59 60 64 | lttrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  →  ( 𝑃 ‘ 𝑡 )  <  𝐷 ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  ∧  ¬  𝑡  ∈  𝑈 )  →  ( 𝑃 ‘ 𝑡 )  <  𝐷 ) | 
						
							| 67 | 21 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  ∧  ¬  𝑡  ∈  𝑈 )  →  𝐷  ∈  ℝ ) | 
						
							| 68 | 57 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  ∧  ¬  𝑡  ∈  𝑈 )  →  ( 𝑃 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 69 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  ∧  ¬  𝑡  ∈  𝑈 )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 70 | 56 | anim1i | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  ∧  ¬  𝑡  ∈  𝑈 )  →  ( 𝑡  ∈  𝑇  ∧  ¬  𝑡  ∈  𝑈 ) ) | 
						
							| 71 |  | eldif | ⊢ ( 𝑡  ∈  ( 𝑇  ∖  𝑈 )  ↔  ( 𝑡  ∈  𝑇  ∧  ¬  𝑡  ∈  𝑈 ) ) | 
						
							| 72 | 70 71 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  ∧  ¬  𝑡  ∈  𝑈 )  →  𝑡  ∈  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 73 |  | rsp | ⊢ ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝐷  ≤  ( 𝑃 ‘ 𝑡 )  →  ( 𝑡  ∈  ( 𝑇  ∖  𝑈 )  →  𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 74 | 69 72 73 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  ∧  ¬  𝑡  ∈  𝑈 )  →  𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 75 | 67 68 74 | lensymd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  ∧  ¬  𝑡  ∈  𝑈 )  →  ¬  ( 𝑃 ‘ 𝑡 )  <  𝐷 ) | 
						
							| 76 | 66 75 | condan | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉 )  →  𝑡  ∈  𝑈 ) | 
						
							| 77 | 76 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑉  →  𝑡  ∈  𝑈 ) ) | 
						
							| 78 | 2 49 1 77 | ssrd | ⊢ ( 𝜑  →  𝑉  ⊆  𝑈 ) | 
						
							| 79 |  | nfv | ⊢ Ⅎ 𝑡 𝑒  ∈  ℝ+ | 
						
							| 80 | 2 79 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑒  ∈  ℝ+ ) | 
						
							| 81 |  | nfv | ⊢ Ⅎ 𝑡 𝑦  ∈  𝐴 | 
						
							| 82 | 80 81 | nfan | ⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 ) | 
						
							| 83 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) | 
						
							| 84 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 ) | 
						
							| 85 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 | 
						
							| 86 | 83 84 85 | nf3an | ⊢ Ⅎ 𝑡 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) | 
						
							| 87 | 82 86 | nfan | ⊢ Ⅎ 𝑡 ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) ) | 
						
							| 88 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( 1  −  ( 𝑦 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( 1  −  ( 𝑦 ‘ 𝑡 ) ) ) | 
						
							| 89 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  1 )  =  ( 𝑡  ∈  𝑇  ↦  1 ) | 
						
							| 90 |  | ssrab2 | ⊢ { 𝑡  ∈  𝑇  ∣  ( 𝑃 ‘ 𝑡 )  <  ( 𝐷  /  2 ) }  ⊆  𝑇 | 
						
							| 91 | 5 90 | eqsstri | ⊢ 𝑉  ⊆  𝑇 | 
						
							| 92 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) )  →  𝑦  ∈  𝐴 ) | 
						
							| 93 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) )  →  𝜑 ) | 
						
							| 94 | 8 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  𝐶 ) | 
						
							| 95 | 4 6 7 94 | fcnre | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  𝑦 : 𝑇 ⟶ ℝ ) | 
						
							| 96 | 93 92 95 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) )  →  𝑦 : 𝑇 ⟶ ℝ ) | 
						
							| 97 | 8 | sselda | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓  ∈  𝐶 ) | 
						
							| 98 | 4 6 7 97 | fcnre | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 99 | 93 98 | sylan | ⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) )  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 100 | 93 9 | syl3an1 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 101 | 93 10 | syl3an1 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 102 | 93 11 | sylan | ⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) )  ∧  𝑎  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑎 )  ∈  𝐴 ) | 
						
							| 103 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) )  →  𝑒  ∈  ℝ+ ) | 
						
							| 104 |  | simpr1 | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 105 |  | simpr2 | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) )  →  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 ) ) | 
						
							| 106 |  | simpr3 | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) | 
						
							| 107 | 87 88 89 91 92 96 99 100 101 102 103 104 105 106 | stoweidlem41 | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝐴 )  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) | 
						
							| 108 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  →  𝐷  ∈  ℝ+ ) | 
						
							| 109 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  →  𝐷  <  1 ) | 
						
							| 110 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  →  𝑃  ∈  𝐴 ) | 
						
							| 111 | 51 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 112 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 113 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 114 | 98 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 115 | 9 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 116 | 10 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 117 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  ∧  𝑎  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑎 )  ∈  𝐴 ) | 
						
							| 118 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  →  𝑒  ∈  ℝ+ ) | 
						
							| 119 | 3 80 5 108 109 110 111 112 113 114 115 116 117 118 | stoweidlem49 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  →  ∃ 𝑦  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝑒 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝑒 ) ) | 
						
							| 120 | 107 119 | r19.29a | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+ )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) | 
						
							| 121 | 120 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) | 
						
							| 122 | 47 78 121 | jca31 | ⊢ ( 𝜑  →  ( ( 𝑍  ∈  𝑉  ∧  𝑉  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 123 |  | eleq2 | ⊢ ( 𝑣  =  𝑉  →  ( 𝑍  ∈  𝑣  ↔  𝑍  ∈  𝑉 ) ) | 
						
							| 124 |  | sseq1 | ⊢ ( 𝑣  =  𝑉  →  ( 𝑣  ⊆  𝑈  ↔  𝑉  ⊆  𝑈 ) ) | 
						
							| 125 | 123 124 | anbi12d | ⊢ ( 𝑣  =  𝑉  →  ( ( 𝑍  ∈  𝑣  ∧  𝑣  ⊆  𝑈 )  ↔  ( 𝑍  ∈  𝑉  ∧  𝑉  ⊆  𝑈 ) ) ) | 
						
							| 126 |  | nfcv | ⊢ Ⅎ 𝑡 𝑣 | 
						
							| 127 | 126 49 | raleqf | ⊢ ( 𝑣  =  𝑉  →  ( ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ↔  ∀ 𝑡  ∈  𝑉 ( 𝑥 ‘ 𝑡 )  <  𝑒 ) ) | 
						
							| 128 | 127 | 3anbi2d | ⊢ ( 𝑣  =  𝑉  →  ( ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) )  ↔  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 129 | 128 | rexbidv | ⊢ ( 𝑣  =  𝑉  →  ( ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) )  ↔  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 130 | 129 | ralbidv | ⊢ ( 𝑣  =  𝑉  →  ( ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) )  ↔  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 131 | 125 130 | anbi12d | ⊢ ( 𝑣  =  𝑉  →  ( ( ( 𝑍  ∈  𝑣  ∧  𝑣  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) )  ↔  ( ( 𝑍  ∈  𝑉  ∧  𝑉  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) ) | 
						
							| 132 | 131 | rspcev | ⊢ ( ( 𝑉  ∈  𝐽  ∧  ( ( 𝑍  ∈  𝑉  ∧  𝑉  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  →  ∃ 𝑣  ∈  𝐽 ( ( 𝑍  ∈  𝑣  ∧  𝑣  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 133 | 26 122 132 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑣  ∈  𝐽 ( ( 𝑍  ∈  𝑣  ∧  𝑣  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) |