Metamath Proof Explorer


Theorem stoweidlem53

Description: This lemma is used to prove the existence of a function p as in Lemma 1 of BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem53.1 𝑡 𝑈
stoweidlem53.2 𝑡 𝜑
stoweidlem53.3 𝐾 = ( topGen ‘ ran (,) )
stoweidlem53.4 𝑄 = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
stoweidlem53.5 𝑊 = { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
stoweidlem53.6 𝑇 = 𝐽
stoweidlem53.7 𝐶 = ( 𝐽 Cn 𝐾 )
stoweidlem53.8 ( 𝜑𝐽 ∈ Comp )
stoweidlem53.9 ( 𝜑𝐴𝐶 )
stoweidlem53.10 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem53.11 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem53.12 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
stoweidlem53.13 ( ( 𝜑 ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
stoweidlem53.14 ( 𝜑𝑈𝐽 )
stoweidlem53.15 ( 𝜑 → ( 𝑇𝑈 ) ≠ ∅ )
stoweidlem53.16 ( 𝜑𝑍𝑈 )
Assertion stoweidlem53 ( 𝜑 → ∃ 𝑝𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem53.1 𝑡 𝑈
2 stoweidlem53.2 𝑡 𝜑
3 stoweidlem53.3 𝐾 = ( topGen ‘ ran (,) )
4 stoweidlem53.4 𝑄 = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
5 stoweidlem53.5 𝑊 = { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
6 stoweidlem53.6 𝑇 = 𝐽
7 stoweidlem53.7 𝐶 = ( 𝐽 Cn 𝐾 )
8 stoweidlem53.8 ( 𝜑𝐽 ∈ Comp )
9 stoweidlem53.9 ( 𝜑𝐴𝐶 )
10 stoweidlem53.10 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
11 stoweidlem53.11 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
12 stoweidlem53.12 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
13 stoweidlem53.13 ( ( 𝜑 ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
14 stoweidlem53.14 ( 𝜑𝑈𝐽 )
15 stoweidlem53.15 ( 𝜑 → ( 𝑇𝑈 ) ≠ ∅ )
16 stoweidlem53.16 ( 𝜑𝑍𝑈 )
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 stoweidlem50 ( 𝜑 → ∃ 𝑢 ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 ) )
18 nfv 𝑡 𝑢 ∈ Fin
19 nfcv 𝑡 𝑢
20 nfv 𝑡 ( 𝑍 ) = 0
21 nfra1 𝑡𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 )
22 20 21 nfan 𝑡 ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) )
23 nfcv 𝑡 𝐴
24 22 23 nfrabw 𝑡 { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
25 4 24 nfcxfr 𝑡 𝑄
26 nfrab1 𝑡 { 𝑡𝑇 ∣ 0 < ( 𝑡 ) }
27 26 nfeq2 𝑡 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) }
28 25 27 nfrex 𝑡𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) }
29 nfcv 𝑡 𝐽
30 28 29 nfrabw 𝑡 { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
31 5 30 nfcxfr 𝑡 𝑊
32 19 31 nfss 𝑡 𝑢𝑊
33 nfcv 𝑡 𝑇
34 33 1 nfdif 𝑡 ( 𝑇𝑈 )
35 nfcv 𝑡 𝑢
36 34 35 nfss 𝑡 ( 𝑇𝑈 ) ⊆ 𝑢
37 18 32 36 nf3an 𝑡 ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 )
38 2 37 nfan 𝑡 ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 ) )
39 nfv 𝑤 𝜑
40 nfv 𝑤 𝑢 ∈ Fin
41 nfcv 𝑤 𝑢
42 nfrab1 𝑤 { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
43 5 42 nfcxfr 𝑤 𝑊
44 41 43 nfss 𝑤 𝑢𝑊
45 nfv 𝑤 ( 𝑇𝑈 ) ⊆ 𝑢
46 40 44 45 nf3an 𝑤 ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 )
47 39 46 nfan 𝑤 ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 ) )
48 nfv 𝜑
49 nfv 𝑢 ∈ Fin
50 nfcv 𝑢
51 nfre1 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) }
52 nfcv 𝐽
53 51 52 nfrabw { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
54 5 53 nfcxfr 𝑊
55 50 54 nfss 𝑢𝑊
56 nfv ( 𝑇𝑈 ) ⊆ 𝑢
57 49 55 56 nf3an ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 )
58 48 57 nfan ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 ) )
59 eqid ( 𝑤𝑢 ↦ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ) = ( 𝑤𝑢 ↦ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } )
60 cmptop ( 𝐽 ∈ Comp → 𝐽 ∈ Top )
61 8 60 syl ( 𝜑𝐽 ∈ Top )
62 retop ( topGen ‘ ran (,) ) ∈ Top
63 3 62 eqeltri 𝐾 ∈ Top
64 cnfex ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 Cn 𝐾 ) ∈ V )
65 61 63 64 sylancl ( 𝜑 → ( 𝐽 Cn 𝐾 ) ∈ V )
66 9 7 sseqtrdi ( 𝜑𝐴 ⊆ ( 𝐽 Cn 𝐾 ) )
67 65 66 ssexd ( 𝜑𝐴 ∈ V )
68 67 adantr ( ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 ) ) → 𝐴 ∈ V )
69 simpr1 ( ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 ) ) → 𝑢 ∈ Fin )
70 simpr2 ( ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 ) ) → 𝑢𝑊 )
71 simpr3 ( ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 ) ) → ( 𝑇𝑈 ) ⊆ 𝑢 )
72 15 adantr ( ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 ) ) → ( 𝑇𝑈 ) ≠ ∅ )
73 38 47 58 4 5 59 68 69 70 71 72 stoweidlem35 ( ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ ( 𝑇𝑈 ) ⊆ 𝑢 ) ) → ∃ 𝑚𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) )
74 17 73 exlimddv ( 𝜑 → ∃ 𝑚𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) )
75 nfv 𝑖 𝜑
76 nfv 𝑖 𝑚 ∈ ℕ
77 nfv 𝑖 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄
78 nfcv 𝑖 ( 𝑇𝑈 )
79 nfre1 𝑖𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 )
80 78 79 nfralw 𝑖𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 )
81 77 80 nfan 𝑖 ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) )
82 76 81 nfan 𝑖 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) )
83 75 82 nfan 𝑖 ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) )
84 nfv 𝑡 𝑚 ∈ ℕ
85 nfcv 𝑡 𝑞
86 nfcv 𝑡 ( 1 ... 𝑚 )
87 85 86 25 nff 𝑡 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄
88 nfra1 𝑡𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 )
89 87 88 nfan 𝑡 ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) )
90 84 89 nfan 𝑡 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) )
91 2 90 nfan 𝑡 ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) )
92 eqid ( 𝑡𝑇 ↦ ( ( 1 / 𝑚 ) · Σ 𝑦 ∈ ( 1 ... 𝑚 ) ( ( 𝑞𝑦 ) ‘ 𝑡 ) ) ) = ( 𝑡𝑇 ↦ ( ( 1 / 𝑚 ) · Σ 𝑦 ∈ ( 1 ... 𝑚 ) ( ( 𝑞𝑦 ) ‘ 𝑡 ) ) )
93 simprl ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑚 ∈ ℕ )
94 simprrl ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 )
95 simprrr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) ) → ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) )
96 66 adantr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) ) → 𝐴 ⊆ ( 𝐽 Cn 𝐾 ) )
97 10 3adant1r ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
98 11 3adant1r ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
99 12 adantlr ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
100 elssuni ( 𝑈𝐽𝑈 𝐽 )
101 100 6 sseqtrrdi ( 𝑈𝐽𝑈𝑇 )
102 14 101 syl ( 𝜑𝑈𝑇 )
103 102 16 sseldd ( 𝜑𝑍𝑇 )
104 103 adantr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑍𝑇 )
105 83 91 3 4 92 93 94 95 6 96 97 98 99 104 stoweidlem44 ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) ) → ∃ 𝑝𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) )
106 105 ex ( 𝜑 → ( ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑝𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) )
107 106 exlimdvv ( 𝜑 → ( ∃ 𝑚𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑝𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) )
108 74 107 mpd ( 𝜑 → ∃ 𝑝𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) )