| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem54.1 | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 2 |  | stoweidlem54.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem54.3 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 4 |  | stoweidlem54.4 | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 5 |  | stoweidlem54.5 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 6 |  | stoweidlem54.6 | ⊢ 𝑌  =  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } | 
						
							| 7 |  | stoweidlem54.7 | ⊢ 𝑃  =  ( 𝑓  ∈  𝑌 ,  𝑔  ∈  𝑌  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 8 |  | stoweidlem54.8 | ⊢ 𝐹  =  ( 𝑡  ∈  𝑇  ↦  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 9 |  | stoweidlem54.9 | ⊢ 𝑍  =  ( 𝑡  ∈  𝑇  ↦  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) | 
						
							| 10 |  | stoweidlem54.10 | ⊢ 𝑉  =  { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) } | 
						
							| 11 |  | stoweidlem54.11 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 12 |  | stoweidlem54.12 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 13 |  | stoweidlem54.13 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 14 |  | stoweidlem54.14 | ⊢ ( 𝜑  →  𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 ) | 
						
							| 15 |  | stoweidlem54.15 | ⊢ ( 𝜑  →  𝐵  ⊆  𝑇 ) | 
						
							| 16 |  | stoweidlem54.16 | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  ran  𝑊 ) | 
						
							| 17 |  | stoweidlem54.17 | ⊢ ( 𝜑  →  𝐷  ⊆  𝑇 ) | 
						
							| 18 |  | stoweidlem54.18 | ⊢ ( 𝜑  →  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 19 |  | stoweidlem54.19 | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 20 |  | stoweidlem54.20 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 21 |  | stoweidlem54.21 | ⊢ ( 𝜑  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 22 |  | nfv | ⊢ Ⅎ 𝑦 ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) | 
						
							| 23 |  | nfv | ⊢ Ⅎ 𝑖 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 | 
						
							| 24 |  | nfra1 | ⊢ Ⅎ 𝑖 ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 25 | 23 24 | nfan | ⊢ Ⅎ 𝑖 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 26 | 1 25 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑡 𝑦 | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑡 ( 1 ... 𝑀 ) | 
						
							| 29 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) | 
						
							| 30 |  | nfcv | ⊢ Ⅎ 𝑡 𝐴 | 
						
							| 31 | 29 30 | nfrabw | ⊢ Ⅎ 𝑡 { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } | 
						
							| 32 | 6 31 | nfcxfr | ⊢ Ⅎ 𝑡 𝑌 | 
						
							| 33 | 27 28 32 | nff | ⊢ Ⅎ 𝑡 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 | 
						
							| 34 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) | 
						
							| 35 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) | 
						
							| 36 | 34 35 | nfan | ⊢ Ⅎ 𝑡 ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 37 | 28 36 | nfralw | ⊢ Ⅎ 𝑡 ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 38 | 33 37 | nfan | ⊢ Ⅎ 𝑡 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 39 | 2 38 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 40 |  | nfv | ⊢ Ⅎ 𝑤 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 41 | 4 40 | nfan | ⊢ Ⅎ 𝑤 ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 42 |  | nfrab1 | ⊢ Ⅎ 𝑤 { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) } | 
						
							| 43 | 10 42 | nfcxfr | ⊢ Ⅎ 𝑤 𝑉 | 
						
							| 44 |  | eqid | ⊢ ( seq 1 ( 𝑃 ,  𝑦 ) ‘ 𝑀 )  =  ( seq 1 ( 𝑃 ,  𝑦 ) ‘ 𝑀 ) | 
						
							| 45 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝑀  ∈  ℕ ) | 
						
							| 46 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 ) | 
						
							| 47 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) | 
						
							| 48 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑤  ∈  𝑉 )  →  𝑤  ∈  𝑉 ) | 
						
							| 49 | 10 | reqabi | ⊢ ( 𝑤  ∈  𝑉  ↔  ( 𝑤  ∈  𝐽  ∧  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) ) | 
						
							| 50 | 49 | simplbi | ⊢ ( 𝑤  ∈  𝑉  →  𝑤  ∈  𝐽 ) | 
						
							| 51 |  | elssuni | ⊢ ( 𝑤  ∈  𝐽  →  𝑤  ⊆  ∪  𝐽 ) | 
						
							| 52 | 51 5 | sseqtrrdi | ⊢ ( 𝑤  ∈  𝐽  →  𝑤  ⊆  𝑇 ) | 
						
							| 53 | 48 50 52 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑤  ∈  𝑉 )  →  𝑤  ⊆  𝑇 ) | 
						
							| 54 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝐷  ⊆  ∪  ran  𝑊 ) | 
						
							| 55 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝐷  ⊆  𝑇 ) | 
						
							| 56 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝐵  ⊆  𝑇 ) | 
						
							| 57 |  | r19.26 | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) )  ↔  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 58 | 57 | simplbi | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) | 
						
							| 59 | 58 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) | 
						
							| 60 | 59 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) | 
						
							| 61 | 57 | simprbi | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 62 | 61 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 63 | 62 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 64 | 11 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 65 | 12 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 66 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝑇  ∈  V ) | 
						
							| 67 | 20 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝐸  ∈  ℝ+ ) | 
						
							| 68 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 69 | 26 39 41 43 6 7 44 8 9 45 46 47 53 54 55 56 60 63 64 65 66 67 68 | stoweidlem51 | ⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 70 | 3 22 18 69 | exlimdd | ⊢ ( 𝜑  →  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 71 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 72 | 70 71 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) |