| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem55.1 | ⊢ Ⅎ 𝑡 𝑈 | 
						
							| 2 |  | stoweidlem55.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem55.3 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 4 |  | stoweidlem55.4 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 5 |  | stoweidlem55.5 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 6 |  | stoweidlem55.6 | ⊢ 𝐶  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 7 |  | stoweidlem55.7 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐶 ) | 
						
							| 8 |  | stoweidlem55.8 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 9 |  | stoweidlem55.9 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 10 |  | stoweidlem55.10 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 11 |  | stoweidlem55.11 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 12 |  | stoweidlem55.12 | ⊢ ( 𝜑  →  𝑈  ∈  𝐽 ) | 
						
							| 13 |  | stoweidlem55.13 | ⊢ ( 𝜑  →  𝑍  ∈  𝑈 ) | 
						
							| 14 |  | stoweidlem55.14 | ⊢ 𝑄  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } | 
						
							| 15 |  | stoweidlem55.15 | ⊢ 𝑊  =  { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } | 
						
							| 16 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 17 | 10 | stoweidlem4 | ⊢ ( ( 𝜑  ∧  0  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  0 )  ∈  𝐴 ) | 
						
							| 18 | 16 17 | mpan2 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  0 )  ∈  𝐴 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( 𝑡  ∈  𝑇  ↦  0 )  ∈  𝐴 ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑡 𝑇 | 
						
							| 21 | 20 1 | nfdif | ⊢ Ⅎ 𝑡 ( 𝑇  ∖  𝑈 ) | 
						
							| 22 |  | nfcv | ⊢ Ⅎ 𝑡 ∅ | 
						
							| 23 | 21 22 | nfeq | ⊢ Ⅎ 𝑡 ( 𝑇  ∖  𝑈 )  =  ∅ | 
						
							| 24 | 2 23 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ ) | 
						
							| 25 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 26 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 27 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  0 )  =  ( 𝑡  ∈  𝑇  ↦  0 ) | 
						
							| 28 | 27 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  0  ∈  ℂ )  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  =  0 ) | 
						
							| 29 | 26 28 | mpan2 | ⊢ ( 𝑡  ∈  𝑇  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  =  0 ) | 
						
							| 30 | 25 29 | breqtrrid | ⊢ ( 𝑡  ∈  𝑇  →  0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) | 
						
							| 32 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 33 | 29 32 | eqbrtrdi | ⊢ ( 𝑡  ∈  𝑇  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 35 | 31 34 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑡  ∈  𝑇 )  →  ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 36 | 35 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( 𝑡  ∈  𝑇  →  ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 37 | 24 36 | ralrimi | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 38 | 13 12 | jca | ⊢ ( 𝜑  →  ( 𝑍  ∈  𝑈  ∧  𝑈  ∈  𝐽 ) ) | 
						
							| 39 |  | elunii | ⊢ ( ( 𝑍  ∈  𝑈  ∧  𝑈  ∈  𝐽 )  →  𝑍  ∈  ∪  𝐽 ) | 
						
							| 40 | 39 5 | eleqtrrdi | ⊢ ( ( 𝑍  ∈  𝑈  ∧  𝑈  ∈  𝐽 )  →  𝑍  ∈  𝑇 ) | 
						
							| 41 |  | eqidd | ⊢ ( 𝑡  =  𝑍  →  0  =  0 ) | 
						
							| 42 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 43 | 41 27 42 | fvmpt | ⊢ ( 𝑍  ∈  𝑇  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 )  =  0 ) | 
						
							| 44 | 38 40 43 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 )  =  0 ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 )  =  0 ) | 
						
							| 46 | 23 | rzalf | ⊢ ( ( 𝑇  ∖  𝑈 )  =  ∅  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) | 
						
							| 48 |  | nfcv | ⊢ Ⅎ 𝑡 𝑝 | 
						
							| 49 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  0 ) | 
						
							| 50 | 48 49 | nfeq | ⊢ Ⅎ 𝑡 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 ) | 
						
							| 51 |  | fveq1 | ⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( 𝑝 ‘ 𝑡 )  =  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) | 
						
							| 52 | 51 | breq2d | ⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ↔  0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) ) | 
						
							| 53 | 51 | breq1d | ⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( ( 𝑝 ‘ 𝑡 )  ≤  1  ↔  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 54 | 52 53 | anbi12d | ⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 55 | 50 54 | ralbid | ⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 56 |  | fveq1 | ⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( 𝑝 ‘ 𝑍 )  =  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 ) ) | 
						
							| 57 | 56 | eqeq1d | ⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( ( 𝑝 ‘ 𝑍 )  =  0  ↔  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 )  =  0 ) ) | 
						
							| 58 | 51 | breq2d | ⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( 0  <  ( 𝑝 ‘ 𝑡 )  ↔  0  <  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) ) | 
						
							| 59 | 50 58 | ralbid | ⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) ) | 
						
							| 60 | 55 57 59 | 3anbi123d | ⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  ↔  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) ) ) | 
						
							| 61 | 60 | rspcev | ⊢ ( ( ( 𝑡  ∈  𝑇  ↦  0 )  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) )  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) | 
						
							| 62 | 19 37 45 47 61 | syl13anc | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) | 
						
							| 63 | 23 | nfn | ⊢ Ⅎ 𝑡 ¬  ( 𝑇  ∖  𝑈 )  =  ∅ | 
						
							| 64 | 2 63 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ ) | 
						
							| 65 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  𝐽  ∈  Comp ) | 
						
							| 66 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  𝐴  ⊆  𝐶 ) | 
						
							| 67 | 8 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 68 | 9 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 69 | 10 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 70 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 71 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  𝑈  ∈  𝐽 ) | 
						
							| 72 |  | neqne | ⊢ ( ¬  ( 𝑇  ∖  𝑈 )  =  ∅  →  ( 𝑇  ∖  𝑈 )  ≠  ∅ ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( 𝑇  ∖  𝑈 )  ≠  ∅ ) | 
						
							| 74 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  𝑍  ∈  𝑈 ) | 
						
							| 75 | 1 64 3 14 15 5 6 65 66 67 68 69 70 71 73 74 | stoweidlem53 | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) | 
						
							| 76 | 62 75 | pm2.61dan | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) |