Metamath Proof Explorer


Theorem stoweidlem56

Description: This theorem proves Lemma 1 in BrosowskiDeutsh p. 90. Here Z is used to represent t_0 in the paper, v is used to represent V in the paper, and e is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem56.1 𝑡 𝑈
stoweidlem56.2 𝑡 𝜑
stoweidlem56.3 𝐾 = ( topGen ‘ ran (,) )
stoweidlem56.4 ( 𝜑𝐽 ∈ Comp )
stoweidlem56.5 𝑇 = 𝐽
stoweidlem56.6 𝐶 = ( 𝐽 Cn 𝐾 )
stoweidlem56.7 ( 𝜑𝐴𝐶 )
stoweidlem56.8 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem56.9 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem56.10 ( ( 𝜑𝑦 ∈ ℝ ) → ( 𝑡𝑇𝑦 ) ∈ 𝐴 )
stoweidlem56.11 ( ( 𝜑 ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
stoweidlem56.12 ( 𝜑𝑈𝐽 )
stoweidlem56.13 ( 𝜑𝑍𝑈 )
Assertion stoweidlem56 ( 𝜑 → ∃ 𝑣𝐽 ( ( 𝑍𝑣𝑣𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑣 ( 𝑥𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑥𝑡 ) ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem56.1 𝑡 𝑈
2 stoweidlem56.2 𝑡 𝜑
3 stoweidlem56.3 𝐾 = ( topGen ‘ ran (,) )
4 stoweidlem56.4 ( 𝜑𝐽 ∈ Comp )
5 stoweidlem56.5 𝑇 = 𝐽
6 stoweidlem56.6 𝐶 = ( 𝐽 Cn 𝐾 )
7 stoweidlem56.7 ( 𝜑𝐴𝐶 )
8 stoweidlem56.8 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
9 stoweidlem56.9 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
10 stoweidlem56.10 ( ( 𝜑𝑦 ∈ ℝ ) → ( 𝑡𝑇𝑦 ) ∈ 𝐴 )
11 stoweidlem56.11 ( ( 𝜑 ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
12 stoweidlem56.12 ( 𝜑𝑈𝐽 )
13 stoweidlem56.13 ( 𝜑𝑍𝑈 )
14 eqid { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) } = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
15 eqid { 𝑤𝐽 ∣ ∃ ∈ { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) } 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } = { 𝑤𝐽 ∣ ∃ ∈ { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) } 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 stoweidlem55 ( 𝜑 → ∃ 𝑝𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) )
17 df-rex ( ∃ 𝑝𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ↔ ∃ 𝑝 ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) )
18 16 17 sylib ( 𝜑 → ∃ 𝑝 ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) )
19 simpl ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) → 𝜑 )
20 simprl ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) → 𝑝𝐴 )
21 simprr3 ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) → ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) )
22 nfv 𝑡 𝑝𝐴
23 nfra1 𝑡𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 )
24 2 22 23 nf3an 𝑡 ( 𝜑𝑝𝐴 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) )
25 4 3ad2ant1 ( ( 𝜑𝑝𝐴 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) → 𝐽 ∈ Comp )
26 7 sselda ( ( 𝜑𝑝𝐴 ) → 𝑝𝐶 )
27 26 6 eleqtrdi ( ( 𝜑𝑝𝐴 ) → 𝑝 ∈ ( 𝐽 Cn 𝐾 ) )
28 27 3adant3 ( ( 𝜑𝑝𝐴 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) → 𝑝 ∈ ( 𝐽 Cn 𝐾 ) )
29 simp3 ( ( 𝜑𝑝𝐴 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) → ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) )
30 12 3ad2ant1 ( ( 𝜑𝑝𝐴 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) → 𝑈𝐽 )
31 1 24 3 5 25 28 29 30 stoweidlem28 ( ( 𝜑𝑝𝐴 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) )
32 19 20 21 31 syl3anc ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) )
33 simpr1 ( ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) → 𝑑 ∈ ℝ+ )
34 simpr2 ( ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) → 𝑑 < 1 )
35 simplrl ( ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) → 𝑝𝐴 )
36 simprr1 ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) → ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) )
37 36 adantr ( ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) → ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) )
38 simprr2 ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) → ( 𝑝𝑍 ) = 0 )
39 38 adantr ( ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) → ( 𝑝𝑍 ) = 0 )
40 simpr3 ( ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) → ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) )
41 37 39 40 3jca ( ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) )
42 35 41 jca ( ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) → ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) )
43 33 34 42 3jca ( ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) → ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) )
44 43 ex ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) → ( ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) → ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) )
45 44 eximdv ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) → ( ∃ 𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) )
46 32 45 mpd ( ( 𝜑 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) )
47 46 ex ( 𝜑 → ( ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) )
48 47 eximdv ( 𝜑 → ( ∃ 𝑝 ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ) → ∃ 𝑝𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) )
49 18 48 mpd ( 𝜑 → ∃ 𝑝𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) )
50 nfv 𝑡 𝑑 ∈ ℝ+
51 nfv 𝑡 𝑑 < 1
52 nfra1 𝑡𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 )
53 nfv 𝑡 ( 𝑝𝑍 ) = 0
54 nfra1 𝑡𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 )
55 52 53 54 nf3an 𝑡 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) )
56 22 55 nfan 𝑡 ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) )
57 50 51 56 nf3an 𝑡 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) )
58 2 57 nfan 𝑡 ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) )
59 nfcv 𝑡 𝑝
60 eqid { 𝑡𝑇 ∣ ( 𝑝𝑡 ) < ( 𝑑 / 2 ) } = { 𝑡𝑇 ∣ ( 𝑝𝑡 ) < ( 𝑑 / 2 ) }
61 7 adantr ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) → 𝐴𝐶 )
62 8 3adant1r ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) ∧ 𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
63 9 3adant1r ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) ∧ 𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
64 10 adantlr ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) ∧ 𝑦 ∈ ℝ ) → ( 𝑡𝑇𝑦 ) ∈ 𝐴 )
65 simpr1 ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) → 𝑑 ∈ ℝ+ )
66 simpr2 ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) → 𝑑 < 1 )
67 12 adantr ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) → 𝑈𝐽 )
68 13 adantr ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) → 𝑍𝑈 )
69 simpr3l ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) → 𝑝𝐴 )
70 simp3r1 ( ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) → ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) )
71 70 adantl ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) → ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) )
72 simp3r2 ( ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) → ( 𝑝𝑍 ) = 0 )
73 72 adantl ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) → ( 𝑝𝑍 ) = 0 )
74 simp3r3 ( ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) → ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) )
75 74 adantl ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) → ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) )
76 1 58 59 3 60 5 6 61 62 63 64 65 66 67 68 69 71 73 75 stoweidlem52 ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) ) → ∃ 𝑣𝐽 ( ( 𝑍𝑣𝑣𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑣 ( 𝑥𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑥𝑡 ) ) ) )
77 76 ex ( 𝜑 → ( ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) → ∃ 𝑣𝐽 ( ( 𝑍𝑣𝑣𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑣 ( 𝑥𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑥𝑡 ) ) ) ) )
78 77 exlimdvv ( 𝜑 → ( ∃ 𝑝𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ( 𝑝𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 𝑑 ≤ ( 𝑝𝑡 ) ) ) ) → ∃ 𝑣𝐽 ( ( 𝑍𝑣𝑣𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑣 ( 𝑥𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑥𝑡 ) ) ) ) )
79 49 78 mpd ( 𝜑 → ∃ 𝑣𝐽 ( ( 𝑍𝑣𝑣𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑣 ( 𝑥𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑥𝑡 ) ) ) )