| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem56.1 | ⊢ Ⅎ 𝑡 𝑈 | 
						
							| 2 |  | stoweidlem56.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem56.3 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 4 |  | stoweidlem56.4 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 5 |  | stoweidlem56.5 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 6 |  | stoweidlem56.6 | ⊢ 𝐶  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 7 |  | stoweidlem56.7 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐶 ) | 
						
							| 8 |  | stoweidlem56.8 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 9 |  | stoweidlem56.9 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 10 |  | stoweidlem56.10 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑦 )  ∈  𝐴 ) | 
						
							| 11 |  | stoweidlem56.11 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 12 |  | stoweidlem56.12 | ⊢ ( 𝜑  →  𝑈  ∈  𝐽 ) | 
						
							| 13 |  | stoweidlem56.13 | ⊢ ( 𝜑  →  𝑍  ∈  𝑈 ) | 
						
							| 14 |  | eqid | ⊢ { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) }  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } | 
						
							| 15 |  | eqid | ⊢ { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  =  { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | stoweidlem55 | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) | 
						
							| 17 |  | df-rex | ⊢ ( ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  ↔  ∃ 𝑝 ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) ) | 
						
							| 18 | 16 17 | sylib | ⊢ ( 𝜑  →  ∃ 𝑝 ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  𝜑 ) | 
						
							| 20 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  𝑝  ∈  𝐴 ) | 
						
							| 21 |  | simprr3 | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) | 
						
							| 22 |  | nfv | ⊢ Ⅎ 𝑡 𝑝  ∈  𝐴 | 
						
							| 23 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) | 
						
							| 24 | 2 22 23 | nf3an | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑝  ∈  𝐴  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) | 
						
							| 25 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  →  𝐽  ∈  Comp ) | 
						
							| 26 | 7 | sselda | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴 )  →  𝑝  ∈  𝐶 ) | 
						
							| 27 | 26 6 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴 )  →  𝑝  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 28 | 27 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  →  𝑝  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 29 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) | 
						
							| 30 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  →  𝑈  ∈  𝐽 ) | 
						
							| 31 | 1 24 3 5 25 28 29 30 | stoweidlem28 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) | 
						
							| 32 | 19 20 21 31 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) | 
						
							| 33 |  | simpr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  𝑑  ∈  ℝ+ ) | 
						
							| 34 |  | simpr2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  𝑑  <  1 ) | 
						
							| 35 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  𝑝  ∈  𝐴 ) | 
						
							| 36 |  | simprr1 | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 38 |  | simprr2 | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ( 𝑝 ‘ 𝑍 )  =  0 ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  ( 𝑝 ‘ 𝑍 )  =  0 ) | 
						
							| 40 |  | simpr3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) | 
						
							| 41 | 37 39 40 | 3jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) | 
						
							| 42 | 35 41 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) | 
						
							| 43 | 33 34 42 | 3jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) ) | 
						
							| 44 | 43 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ( ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) )  →  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 45 | 44 | eximdv | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ( ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 46 | 32 45 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) ) | 
						
							| 47 | 46 | ex | ⊢ ( 𝜑  →  ( ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 48 | 47 | eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑝 ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) )  →  ∃ 𝑝 ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 49 | 18 48 | mpd | ⊢ ( 𝜑  →  ∃ 𝑝 ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) ) | 
						
							| 50 |  | nfv | ⊢ Ⅎ 𝑡 𝑑  ∈  ℝ+ | 
						
							| 51 |  | nfv | ⊢ Ⅎ 𝑡 𝑑  <  1 | 
						
							| 52 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 ) | 
						
							| 53 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝑝 ‘ 𝑍 )  =  0 | 
						
							| 54 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) | 
						
							| 55 | 52 53 54 | nf3an | ⊢ Ⅎ 𝑡 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) | 
						
							| 56 | 22 55 | nfan | ⊢ Ⅎ 𝑡 ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) | 
						
							| 57 | 50 51 56 | nf3an | ⊢ Ⅎ 𝑡 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) | 
						
							| 58 | 2 57 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) ) | 
						
							| 59 |  | nfcv | ⊢ Ⅎ 𝑡 𝑝 | 
						
							| 60 |  | eqid | ⊢ { 𝑡  ∈  𝑇  ∣  ( 𝑝 ‘ 𝑡 )  <  ( 𝑑  /  2 ) }  =  { 𝑡  ∈  𝑇  ∣  ( 𝑝 ‘ 𝑡 )  <  ( 𝑑  /  2 ) } | 
						
							| 61 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  𝐴  ⊆  𝐶 ) | 
						
							| 62 | 8 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 63 | 9 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 64 | 10 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  ∧  𝑦  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑦 )  ∈  𝐴 ) | 
						
							| 65 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  𝑑  ∈  ℝ+ ) | 
						
							| 66 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  𝑑  <  1 ) | 
						
							| 67 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  𝑈  ∈  𝐽 ) | 
						
							| 68 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  𝑍  ∈  𝑈 ) | 
						
							| 69 |  | simpr3l | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  𝑝  ∈  𝐴 ) | 
						
							| 70 |  | simp3r1 | ⊢ ( ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 72 |  | simp3r2 | ⊢ ( ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ( 𝑝 ‘ 𝑍 )  =  0 ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  ( 𝑝 ‘ 𝑍 )  =  0 ) | 
						
							| 74 |  | simp3r3 | ⊢ ( ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) | 
						
							| 76 | 1 58 59 3 60 5 6 61 62 63 64 65 66 67 68 69 71 73 75 | stoweidlem52 | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  ∃ 𝑣  ∈  𝐽 ( ( 𝑍  ∈  𝑣  ∧  𝑣  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 77 | 76 | ex | ⊢ ( 𝜑  →  ( ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∃ 𝑣  ∈  𝐽 ( ( 𝑍  ∈  𝑣  ∧  𝑣  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) ) | 
						
							| 78 | 77 | exlimdvv | ⊢ ( 𝜑  →  ( ∃ 𝑝 ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∃ 𝑣  ∈  𝐽 ( ( 𝑍  ∈  𝑣  ∧  𝑣  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) ) | 
						
							| 79 | 49 78 | mpd | ⊢ ( 𝜑  →  ∃ 𝑣  ∈  𝐽 ( ( 𝑍  ∈  𝑣  ∧  𝑣  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) |