| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem57.1 | ⊢ Ⅎ 𝑡 𝐷 | 
						
							| 2 |  | stoweidlem57.2 | ⊢ Ⅎ 𝑡 𝑈 | 
						
							| 3 |  | stoweidlem57.3 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 4 |  | stoweidlem57.4 | ⊢ 𝑌  =  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } | 
						
							| 5 |  | stoweidlem57.5 | ⊢ 𝑉  =  { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) } | 
						
							| 6 |  | stoweidlem57.6 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 7 |  | stoweidlem57.7 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 8 |  | stoweidlem57.8 | ⊢ 𝐶  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 9 |  | stoweidlem57.9 | ⊢ 𝑈  =  ( 𝑇  ∖  𝐵 ) | 
						
							| 10 |  | stoweidlem57.10 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 11 |  | stoweidlem57.11 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐶 ) | 
						
							| 12 |  | stoweidlem57.12 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 13 |  | stoweidlem57.13 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 14 |  | stoweidlem57.14 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑎 )  ∈  𝐴 ) | 
						
							| 15 |  | stoweidlem57.15 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 16 |  | stoweidlem57.16 | ⊢ ( 𝜑  →  𝐵  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 17 |  | stoweidlem57.17 | ⊢ ( 𝜑  →  𝐷  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 18 |  | stoweidlem57.18 | ⊢ ( 𝜑  →  ( 𝐵  ∩  𝐷 )  =  ∅ ) | 
						
							| 19 |  | stoweidlem57.19 | ⊢ ( 𝜑  →  𝐷  ≠  ∅ ) | 
						
							| 20 |  | stoweidlem57.20 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 21 |  | stoweidlem57.21 | ⊢ ( 𝜑  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 22 | 1 | nfcri | ⊢ Ⅎ 𝑡 𝑠  ∈  𝐷 | 
						
							| 23 | 3 22 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑠  ∈  𝐷 ) | 
						
							| 24 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  𝐽  ∈  Comp ) | 
						
							| 25 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  𝐴  ⊆  𝐶 ) | 
						
							| 26 | 12 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 27 | 13 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 28 | 14 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  ∧  𝑎  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑎 )  ∈  𝐴 ) | 
						
							| 29 | 15 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 30 |  | cmptop | ⊢ ( 𝐽  ∈  Comp  →  𝐽  ∈  Top ) | 
						
							| 31 | 7 | iscld | ⊢ ( 𝐽  ∈  Top  →  ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  ↔  ( 𝐵  ⊆  𝑇  ∧  ( 𝑇  ∖  𝐵 )  ∈  𝐽 ) ) ) | 
						
							| 32 | 10 30 31 | 3syl | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  ↔  ( 𝐵  ⊆  𝑇  ∧  ( 𝑇  ∖  𝐵 )  ∈  𝐽 ) ) ) | 
						
							| 33 | 16 32 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  ⊆  𝑇  ∧  ( 𝑇  ∖  𝐵 )  ∈  𝐽 ) ) | 
						
							| 34 | 33 | simprd | ⊢ ( 𝜑  →  ( 𝑇  ∖  𝐵 )  ∈  𝐽 ) | 
						
							| 35 | 9 34 | eqeltrid | ⊢ ( 𝜑  →  𝑈  ∈  𝐽 ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  𝑈  ∈  𝐽 ) | 
						
							| 37 | 7 | cldss | ⊢ ( 𝐷  ∈  ( Clsd ‘ 𝐽 )  →  𝐷  ⊆  𝑇 ) | 
						
							| 38 | 17 37 | syl | ⊢ ( 𝜑  →  𝐷  ⊆  𝑇 ) | 
						
							| 39 | 38 | sselda | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  𝑠  ∈  𝑇 ) | 
						
							| 40 |  | disjr | ⊢ ( ( 𝐵  ∩  𝐷 )  =  ∅  ↔  ∀ 𝑠  ∈  𝐷 ¬  𝑠  ∈  𝐵 ) | 
						
							| 41 | 18 40 | sylib | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  𝐷 ¬  𝑠  ∈  𝐵 ) | 
						
							| 42 | 41 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  ¬  𝑠  ∈  𝐵 ) | 
						
							| 43 | 39 42 | eldifd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  𝑠  ∈  ( 𝑇  ∖  𝐵 ) ) | 
						
							| 44 | 43 9 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  𝑠  ∈  𝑈 ) | 
						
							| 45 | 2 23 6 24 7 8 25 26 27 28 29 36 44 | stoweidlem56 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  ∃ 𝑤  ∈  𝐽 ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) ) | 
						
							| 46 |  | simpl | ⊢ ( ( 𝑤  ∈  𝐽  ∧  ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) )  →  𝑤  ∈  𝐽 ) | 
						
							| 47 |  | simprll | ⊢ ( ( 𝑤  ∈  𝐽  ∧  ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) )  →  𝑠  ∈  𝑤 ) | 
						
							| 48 |  | simprr | ⊢ ( ( 𝑤  ∈  𝐽  ∧  ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) )  →  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 49 | 5 | reqabi | ⊢ ( 𝑤  ∈  𝑉  ↔  ( 𝑤  ∈  𝐽  ∧  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) ) | 
						
							| 50 | 46 48 49 | sylanbrc | ⊢ ( ( 𝑤  ∈  𝐽  ∧  ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) )  →  𝑤  ∈  𝑉 ) | 
						
							| 51 | 46 47 50 | jca32 | ⊢ ( ( 𝑤  ∈  𝐽  ∧  ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) )  →  ( 𝑤  ∈  𝐽  ∧  ( 𝑠  ∈  𝑤  ∧  𝑤  ∈  𝑉 ) ) ) | 
						
							| 52 | 51 | reximi2 | ⊢ ( ∃ 𝑤  ∈  𝐽 ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) )  →  ∃ 𝑤  ∈  𝐽 ( 𝑠  ∈  𝑤  ∧  𝑤  ∈  𝑉 ) ) | 
						
							| 53 |  | rexex | ⊢ ( ∃ 𝑤  ∈  𝐽 ( 𝑠  ∈  𝑤  ∧  𝑤  ∈  𝑉 )  →  ∃ 𝑤 ( 𝑠  ∈  𝑤  ∧  𝑤  ∈  𝑉 ) ) | 
						
							| 54 | 45 52 53 | 3syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  ∃ 𝑤 ( 𝑠  ∈  𝑤  ∧  𝑤  ∈  𝑉 ) ) | 
						
							| 55 |  | nfcv | ⊢ Ⅎ 𝑤 𝑠 | 
						
							| 56 |  | nfrab1 | ⊢ Ⅎ 𝑤 { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) } | 
						
							| 57 | 5 56 | nfcxfr | ⊢ Ⅎ 𝑤 𝑉 | 
						
							| 58 | 55 57 | elunif | ⊢ ( 𝑠  ∈  ∪  𝑉  ↔  ∃ 𝑤 ( 𝑠  ∈  𝑤  ∧  𝑤  ∈  𝑉 ) ) | 
						
							| 59 | 54 58 | sylibr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  𝑠  ∈  ∪  𝑉 ) | 
						
							| 60 | 59 | ex | ⊢ ( 𝜑  →  ( 𝑠  ∈  𝐷  →  𝑠  ∈  ∪  𝑉 ) ) | 
						
							| 61 | 60 | ssrdv | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑉 ) | 
						
							| 62 |  | cmpcld | ⊢ ( ( 𝐽  ∈  Comp  ∧  𝐷  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐽  ↾t  𝐷 )  ∈  Comp ) | 
						
							| 63 | 10 17 62 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  ↾t  𝐷 )  ∈  Comp ) | 
						
							| 64 | 10 30 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 65 | 7 | cmpsub | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐷  ⊆  𝑇 )  →  ( ( 𝐽  ↾t  𝐷 )  ∈  Comp  ↔  ∀ 𝑘  ∈  𝒫  𝐽 ( 𝐷  ⊆  ∪  𝑘  →  ∃ 𝑢  ∈  ( 𝒫  𝑘  ∩  Fin ) 𝐷  ⊆  ∪  𝑢 ) ) ) | 
						
							| 66 | 64 38 65 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐽  ↾t  𝐷 )  ∈  Comp  ↔  ∀ 𝑘  ∈  𝒫  𝐽 ( 𝐷  ⊆  ∪  𝑘  →  ∃ 𝑢  ∈  ( 𝒫  𝑘  ∩  Fin ) 𝐷  ⊆  ∪  𝑢 ) ) ) | 
						
							| 67 | 63 66 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝒫  𝐽 ( 𝐷  ⊆  ∪  𝑘  →  ∃ 𝑢  ∈  ( 𝒫  𝑘  ∩  Fin ) 𝐷  ⊆  ∪  𝑢 ) ) | 
						
							| 68 |  | ssrab2 | ⊢ { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) }  ⊆  𝐽 | 
						
							| 69 | 5 68 | eqsstri | ⊢ 𝑉  ⊆  𝐽 | 
						
							| 70 | 5 10 | rabexd | ⊢ ( 𝜑  →  𝑉  ∈  V ) | 
						
							| 71 |  | elpwg | ⊢ ( 𝑉  ∈  V  →  ( 𝑉  ∈  𝒫  𝐽  ↔  𝑉  ⊆  𝐽 ) ) | 
						
							| 72 | 70 71 | syl | ⊢ ( 𝜑  →  ( 𝑉  ∈  𝒫  𝐽  ↔  𝑉  ⊆  𝐽 ) ) | 
						
							| 73 | 69 72 | mpbiri | ⊢ ( 𝜑  →  𝑉  ∈  𝒫  𝐽 ) | 
						
							| 74 |  | unieq | ⊢ ( 𝑘  =  𝑉  →  ∪  𝑘  =  ∪  𝑉 ) | 
						
							| 75 | 74 | sseq2d | ⊢ ( 𝑘  =  𝑉  →  ( 𝐷  ⊆  ∪  𝑘  ↔  𝐷  ⊆  ∪  𝑉 ) ) | 
						
							| 76 |  | pweq | ⊢ ( 𝑘  =  𝑉  →  𝒫  𝑘  =  𝒫  𝑉 ) | 
						
							| 77 | 76 | ineq1d | ⊢ ( 𝑘  =  𝑉  →  ( 𝒫  𝑘  ∩  Fin )  =  ( 𝒫  𝑉  ∩  Fin ) ) | 
						
							| 78 | 77 | rexeqdv | ⊢ ( 𝑘  =  𝑉  →  ( ∃ 𝑢  ∈  ( 𝒫  𝑘  ∩  Fin ) 𝐷  ⊆  ∪  𝑢  ↔  ∃ 𝑢  ∈  ( 𝒫  𝑉  ∩  Fin ) 𝐷  ⊆  ∪  𝑢 ) ) | 
						
							| 79 | 75 78 | imbi12d | ⊢ ( 𝑘  =  𝑉  →  ( ( 𝐷  ⊆  ∪  𝑘  →  ∃ 𝑢  ∈  ( 𝒫  𝑘  ∩  Fin ) 𝐷  ⊆  ∪  𝑢 )  ↔  ( 𝐷  ⊆  ∪  𝑉  →  ∃ 𝑢  ∈  ( 𝒫  𝑉  ∩  Fin ) 𝐷  ⊆  ∪  𝑢 ) ) ) | 
						
							| 80 | 79 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  𝒫  𝐽 ( 𝐷  ⊆  ∪  𝑘  →  ∃ 𝑢  ∈  ( 𝒫  𝑘  ∩  Fin ) 𝐷  ⊆  ∪  𝑢 )  ∧  𝑉  ∈  𝒫  𝐽 )  →  ( 𝐷  ⊆  ∪  𝑉  →  ∃ 𝑢  ∈  ( 𝒫  𝑉  ∩  Fin ) 𝐷  ⊆  ∪  𝑢 ) ) | 
						
							| 81 | 67 73 80 | syl2anc | ⊢ ( 𝜑  →  ( 𝐷  ⊆  ∪  𝑉  →  ∃ 𝑢  ∈  ( 𝒫  𝑉  ∩  Fin ) 𝐷  ⊆  ∪  𝑢 ) ) | 
						
							| 82 | 61 81 | mpd | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  ( 𝒫  𝑉  ∩  Fin ) 𝐷  ⊆  ∪  𝑢 ) | 
						
							| 83 |  | elinel1 | ⊢ ( 𝑢  ∈  ( 𝒫  𝑉  ∩  Fin )  →  𝑢  ∈  𝒫  𝑉 ) | 
						
							| 84 |  | elpwi | ⊢ ( 𝑢  ∈  𝒫  𝑉  →  𝑢  ⊆  𝑉 ) | 
						
							| 85 | 84 | ssdifssd | ⊢ ( 𝑢  ∈  𝒫  𝑉  →  ( 𝑢  ∖  { ∅ } )  ⊆  𝑉 ) | 
						
							| 86 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 87 |  | difexg | ⊢ ( 𝑢  ∈  V  →  ( 𝑢  ∖  { ∅ } )  ∈  V ) | 
						
							| 88 | 86 87 | ax-mp | ⊢ ( 𝑢  ∖  { ∅ } )  ∈  V | 
						
							| 89 | 88 | elpw | ⊢ ( ( 𝑢  ∖  { ∅ } )  ∈  𝒫  𝑉  ↔  ( 𝑢  ∖  { ∅ } )  ⊆  𝑉 ) | 
						
							| 90 | 85 89 | sylibr | ⊢ ( 𝑢  ∈  𝒫  𝑉  →  ( 𝑢  ∖  { ∅ } )  ∈  𝒫  𝑉 ) | 
						
							| 91 | 83 90 | syl | ⊢ ( 𝑢  ∈  ( 𝒫  𝑉  ∩  Fin )  →  ( 𝑢  ∖  { ∅ } )  ∈  𝒫  𝑉 ) | 
						
							| 92 |  | elinel2 | ⊢ ( 𝑢  ∈  ( 𝒫  𝑉  ∩  Fin )  →  𝑢  ∈  Fin ) | 
						
							| 93 |  | diffi | ⊢ ( 𝑢  ∈  Fin  →  ( 𝑢  ∖  { ∅ } )  ∈  Fin ) | 
						
							| 94 | 92 93 | syl | ⊢ ( 𝑢  ∈  ( 𝒫  𝑉  ∩  Fin )  →  ( 𝑢  ∖  { ∅ } )  ∈  Fin ) | 
						
							| 95 | 91 94 | elind | ⊢ ( 𝑢  ∈  ( 𝒫  𝑉  ∩  Fin )  →  ( 𝑢  ∖  { ∅ } )  ∈  ( 𝒫  𝑉  ∩  Fin ) ) | 
						
							| 96 | 95 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  𝐷  ⊆  ∪  𝑢 )  →  ( 𝑢  ∖  { ∅ } )  ∈  ( 𝒫  𝑉  ∩  Fin ) ) | 
						
							| 97 |  | unidif0 | ⊢ ∪  ( 𝑢  ∖  { ∅ } )  =  ∪  𝑢 | 
						
							| 98 | 97 | sseq2i | ⊢ ( 𝐷  ⊆  ∪  ( 𝑢  ∖  { ∅ } )  ↔  𝐷  ⊆  ∪  𝑢 ) | 
						
							| 99 | 98 | biimpri | ⊢ ( 𝐷  ⊆  ∪  𝑢  →  𝐷  ⊆  ∪  ( 𝑢  ∖  { ∅ } ) ) | 
						
							| 100 | 99 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  𝐷  ⊆  ∪  𝑢 )  →  𝐷  ⊆  ∪  ( 𝑢  ∖  { ∅ } ) ) | 
						
							| 101 |  | eldifsni | ⊢ ( 𝑤  ∈  ( 𝑢  ∖  { ∅ } )  →  𝑤  ≠  ∅ ) | 
						
							| 102 | 101 | rgen | ⊢ ∀ 𝑤  ∈  ( 𝑢  ∖  { ∅ } ) 𝑤  ≠  ∅ | 
						
							| 103 | 102 | a1i | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  𝐷  ⊆  ∪  𝑢 )  →  ∀ 𝑤  ∈  ( 𝑢  ∖  { ∅ } ) 𝑤  ≠  ∅ ) | 
						
							| 104 |  | unieq | ⊢ ( 𝑟  =  ( 𝑢  ∖  { ∅ } )  →  ∪  𝑟  =  ∪  ( 𝑢  ∖  { ∅ } ) ) | 
						
							| 105 | 104 | sseq2d | ⊢ ( 𝑟  =  ( 𝑢  ∖  { ∅ } )  →  ( 𝐷  ⊆  ∪  𝑟  ↔  𝐷  ⊆  ∪  ( 𝑢  ∖  { ∅ } ) ) ) | 
						
							| 106 |  | raleq | ⊢ ( 𝑟  =  ( 𝑢  ∖  { ∅ } )  →  ( ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅  ↔  ∀ 𝑤  ∈  ( 𝑢  ∖  { ∅ } ) 𝑤  ≠  ∅ ) ) | 
						
							| 107 | 105 106 | anbi12d | ⊢ ( 𝑟  =  ( 𝑢  ∖  { ∅ } )  →  ( ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ )  ↔  ( 𝐷  ⊆  ∪  ( 𝑢  ∖  { ∅ } )  ∧  ∀ 𝑤  ∈  ( 𝑢  ∖  { ∅ } ) 𝑤  ≠  ∅ ) ) ) | 
						
							| 108 | 107 | rspcev | ⊢ ( ( ( 𝑢  ∖  { ∅ } )  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  ( 𝐷  ⊆  ∪  ( 𝑢  ∖  { ∅ } )  ∧  ∀ 𝑤  ∈  ( 𝑢  ∖  { ∅ } ) 𝑤  ≠  ∅ ) )  →  ∃ 𝑟  ∈  ( 𝒫  𝑉  ∩  Fin ) ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) ) | 
						
							| 109 | 96 100 103 108 | syl12anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  𝐷  ⊆  ∪  𝑢 )  →  ∃ 𝑟  ∈  ( 𝒫  𝑉  ∩  Fin ) ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) ) | 
						
							| 110 | 109 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑢  ∈  ( 𝒫  𝑉  ∩  Fin ) 𝐷  ⊆  ∪  𝑢  →  ∃ 𝑟  ∈  ( 𝒫  𝑉  ∩  Fin ) ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) ) ) | 
						
							| 111 | 82 110 | mpd | ⊢ ( 𝜑  →  ∃ 𝑟  ∈  ( 𝒫  𝑉  ∩  Fin ) ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) ) | 
						
							| 112 |  | nfv | ⊢ Ⅎ ℎ 𝜑 | 
						
							| 113 |  | nfcv | ⊢ Ⅎ ℎ ℝ+ | 
						
							| 114 |  | nfre1 | ⊢ Ⅎ ℎ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) | 
						
							| 115 | 113 114 | nfralw | ⊢ Ⅎ ℎ ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) | 
						
							| 116 |  | nfcv | ⊢ Ⅎ ℎ 𝐽 | 
						
							| 117 | 115 116 | nfrabw | ⊢ Ⅎ ℎ { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) } | 
						
							| 118 | 5 117 | nfcxfr | ⊢ Ⅎ ℎ 𝑉 | 
						
							| 119 | 118 | nfpw | ⊢ Ⅎ ℎ 𝒫  𝑉 | 
						
							| 120 |  | nfcv | ⊢ Ⅎ ℎ Fin | 
						
							| 121 | 119 120 | nfin | ⊢ Ⅎ ℎ ( 𝒫  𝑉  ∩  Fin ) | 
						
							| 122 | 121 | nfcri | ⊢ Ⅎ ℎ 𝑟  ∈  ( 𝒫  𝑉  ∩  Fin ) | 
						
							| 123 |  | nfv | ⊢ Ⅎ ℎ ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) | 
						
							| 124 | 112 122 123 | nf3an | ⊢ Ⅎ ℎ ( 𝜑  ∧  𝑟  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) ) | 
						
							| 125 |  | nfcv | ⊢ Ⅎ 𝑡 ℝ+ | 
						
							| 126 |  | nfcv | ⊢ Ⅎ 𝑡 𝐴 | 
						
							| 127 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) | 
						
							| 128 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒 | 
						
							| 129 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) | 
						
							| 130 | 127 128 129 | nf3an | ⊢ Ⅎ 𝑡 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) | 
						
							| 131 | 126 130 | nfrexw | ⊢ Ⅎ 𝑡 ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) | 
						
							| 132 | 125 131 | nfralw | ⊢ Ⅎ 𝑡 ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) | 
						
							| 133 |  | nfcv | ⊢ Ⅎ 𝑡 𝐽 | 
						
							| 134 | 132 133 | nfrabw | ⊢ Ⅎ 𝑡 { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) } | 
						
							| 135 | 5 134 | nfcxfr | ⊢ Ⅎ 𝑡 𝑉 | 
						
							| 136 | 135 | nfpw | ⊢ Ⅎ 𝑡 𝒫  𝑉 | 
						
							| 137 |  | nfcv | ⊢ Ⅎ 𝑡 Fin | 
						
							| 138 | 136 137 | nfin | ⊢ Ⅎ 𝑡 ( 𝒫  𝑉  ∩  Fin ) | 
						
							| 139 | 138 | nfcri | ⊢ Ⅎ 𝑡 𝑟  ∈  ( 𝒫  𝑉  ∩  Fin ) | 
						
							| 140 |  | nfcv | ⊢ Ⅎ 𝑡 ∪  𝑟 | 
						
							| 141 | 1 140 | nfss | ⊢ Ⅎ 𝑡 𝐷  ⊆  ∪  𝑟 | 
						
							| 142 |  | nfv | ⊢ Ⅎ 𝑡 ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ | 
						
							| 143 | 141 142 | nfan | ⊢ Ⅎ 𝑡 ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) | 
						
							| 144 | 3 139 143 | nf3an | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑟  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) ) | 
						
							| 145 |  | nfv | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 146 | 57 | nfpw | ⊢ Ⅎ 𝑤 𝒫  𝑉 | 
						
							| 147 |  | nfcv | ⊢ Ⅎ 𝑤 Fin | 
						
							| 148 | 146 147 | nfin | ⊢ Ⅎ 𝑤 ( 𝒫  𝑉  ∩  Fin ) | 
						
							| 149 | 148 | nfcri | ⊢ Ⅎ 𝑤 𝑟  ∈  ( 𝒫  𝑉  ∩  Fin ) | 
						
							| 150 |  | nfv | ⊢ Ⅎ 𝑤 𝐷  ⊆  ∪  𝑟 | 
						
							| 151 |  | nfra1 | ⊢ Ⅎ 𝑤 ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ | 
						
							| 152 | 150 151 | nfan | ⊢ Ⅎ 𝑤 ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) | 
						
							| 153 | 145 149 152 | nf3an | ⊢ Ⅎ 𝑤 ( 𝜑  ∧  𝑟  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) ) | 
						
							| 154 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) )  →  𝑟  ∈  ( 𝒫  𝑉  ∩  Fin ) ) | 
						
							| 155 |  | simp3l | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) )  →  𝐷  ⊆  ∪  𝑟 ) | 
						
							| 156 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) )  →  𝐷  ≠  ∅ ) | 
						
							| 157 | 20 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) )  →  𝐸  ∈  ℝ+ ) | 
						
							| 158 | 33 | simpld | ⊢ ( 𝜑  →  𝐵  ⊆  𝑇 ) | 
						
							| 159 | 158 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) )  →  𝐵  ⊆  𝑇 ) | 
						
							| 160 | 70 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) )  →  𝑉  ∈  V ) | 
						
							| 161 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 162 | 6 161 | eqeltri | ⊢ 𝐾  ∈  Top | 
						
							| 163 |  | cnfex | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐾  ∈  Top )  →  ( 𝐽  Cn  𝐾 )  ∈  V ) | 
						
							| 164 | 64 162 163 | sylancl | ⊢ ( 𝜑  →  ( 𝐽  Cn  𝐾 )  ∈  V ) | 
						
							| 165 | 11 8 | sseqtrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 166 | 164 165 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 167 | 166 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) )  →  𝐴  ∈  V ) | 
						
							| 168 | 124 144 153 9 4 5 154 155 156 157 159 160 167 | stoweidlem39 | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( 𝒫  𝑉  ∩  Fin )  ∧  ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ ) )  →  ∃ 𝑚  ∈  ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 169 | 168 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑟  ∈  ( 𝒫  𝑉  ∩  Fin ) ( 𝐷  ⊆  ∪  𝑟  ∧  ∀ 𝑤  ∈  𝑟 𝑤  ≠  ∅ )  →  ∃ 𝑚  ∈  ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 170 | 111 169 | mpd | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 171 |  | nfv | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 172 |  | nfv | ⊢ Ⅎ 𝑖 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 | 
						
							| 173 |  | nfv | ⊢ Ⅎ 𝑖 𝐷  ⊆  ∪  ran  𝑣 | 
						
							| 174 |  | nfv | ⊢ Ⅎ 𝑖 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 | 
						
							| 175 |  | nfra1 | ⊢ Ⅎ 𝑖 ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 176 | 174 175 | nfan | ⊢ Ⅎ 𝑖 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 177 | 176 | nfex | ⊢ Ⅎ 𝑖 ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 178 | 172 173 177 | nf3an | ⊢ Ⅎ 𝑖 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 179 | 171 178 | nfan | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 180 |  | nfv | ⊢ Ⅎ 𝑡 𝑚  ∈  ℕ | 
						
							| 181 | 3 180 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 182 |  | nfcv | ⊢ Ⅎ 𝑡 𝑣 | 
						
							| 183 |  | nfcv | ⊢ Ⅎ 𝑡 ( 1 ... 𝑚 ) | 
						
							| 184 | 182 183 135 | nff | ⊢ Ⅎ 𝑡 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 | 
						
							| 185 |  | nfcv | ⊢ Ⅎ 𝑡 ∪  ran  𝑣 | 
						
							| 186 | 1 185 | nfss | ⊢ Ⅎ 𝑡 𝐷  ⊆  ∪  ran  𝑣 | 
						
							| 187 |  | nfcv | ⊢ Ⅎ 𝑡 𝑦 | 
						
							| 188 | 127 126 | nfrabw | ⊢ Ⅎ 𝑡 { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } | 
						
							| 189 | 4 188 | nfcxfr | ⊢ Ⅎ 𝑡 𝑌 | 
						
							| 190 | 187 183 189 | nff | ⊢ Ⅎ 𝑡 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 | 
						
							| 191 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 ) | 
						
							| 192 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) | 
						
							| 193 | 191 192 | nfan | ⊢ Ⅎ 𝑡 ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 194 | 183 193 | nfralw | ⊢ Ⅎ 𝑡 ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 195 | 190 194 | nfan | ⊢ Ⅎ 𝑡 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 196 | 195 | nfex | ⊢ Ⅎ 𝑡 ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 197 | 184 186 196 | nf3an | ⊢ Ⅎ 𝑡 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 198 | 181 197 | nfan | ⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 199 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 200 |  | nfv | ⊢ Ⅎ 𝑦 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 | 
						
							| 201 |  | nfv | ⊢ Ⅎ 𝑦 𝐷  ⊆  ∪  ran  𝑣 | 
						
							| 202 |  | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 203 | 200 201 202 | nf3an | ⊢ Ⅎ 𝑦 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 204 | 199 203 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 205 |  | nfv | ⊢ Ⅎ 𝑤 ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 206 |  | nfcv | ⊢ Ⅎ 𝑤 𝑣 | 
						
							| 207 |  | nfcv | ⊢ Ⅎ 𝑤 ( 1 ... 𝑚 ) | 
						
							| 208 | 206 207 57 | nff | ⊢ Ⅎ 𝑤 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 | 
						
							| 209 |  | nfv | ⊢ Ⅎ 𝑤 𝐷  ⊆  ∪  ran  𝑣 | 
						
							| 210 |  | nfv | ⊢ Ⅎ 𝑤 ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 211 | 208 209 210 | nf3an | ⊢ Ⅎ 𝑤 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 212 | 205 211 | nfan | ⊢ Ⅎ 𝑤 ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 213 |  | eqid | ⊢ { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  =  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } | 
						
							| 214 |  | eqid | ⊢ ( 𝑓  ∈  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } ,  𝑔  ∈  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) )  =  ( 𝑓  ∈  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } ,  𝑔  ∈  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 215 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 216 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( seq 1 (  ·  ,  ( ( 𝑡  ∈  𝑇  ↦  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ‘ 𝑚 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( seq 1 (  ·  ,  ( ( 𝑡  ∈  𝑇  ↦  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ‘ 𝑚 ) ) | 
						
							| 217 |  | simp1ll | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  𝜑 ) | 
						
							| 218 | 217 13 | syld3an1 | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 219 | 11 | sselda | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓  ∈  𝐶 ) | 
						
							| 220 | 6 7 8 219 | fcnre | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 221 | 220 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 222 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 223 |  | simpr1 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  →  𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ) | 
						
							| 224 | 7 | cldss | ⊢ ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  →  𝐵  ⊆  𝑇 ) | 
						
							| 225 | 16 224 | syl | ⊢ ( 𝜑  →  𝐵  ⊆  𝑇 ) | 
						
							| 226 | 225 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  →  𝐵  ⊆  𝑇 ) | 
						
							| 227 |  | simpr2 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  →  𝐷  ⊆  ∪  ran  𝑣 ) | 
						
							| 228 | 38 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  →  𝐷  ⊆  𝑇 ) | 
						
							| 229 |  | feq3 | ⊢ ( 𝑌  =  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  →  ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ↔  𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } ) ) | 
						
							| 230 | 4 229 | ax-mp | ⊢ ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ↔  𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } ) | 
						
							| 231 | 230 | biimpi | ⊢ ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  →  𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } ) | 
						
							| 232 | 231 | anim1i | ⊢ ( ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ( 𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 233 | 232 | eximi | ⊢ ( ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 234 | 233 | 3ad2ant3 | ⊢ ( ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 235 | 234 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  →  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 236 | 10 | uniexd | ⊢ ( 𝜑  →  ∪  𝐽  ∈  V ) | 
						
							| 237 | 7 236 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 238 | 237 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  →  𝑇  ∈  V ) | 
						
							| 239 | 20 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  →  𝐸  ∈  ℝ+ ) | 
						
							| 240 | 21 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 241 | 179 198 204 212 7 213 214 215 216 5 218 221 222 223 226 227 228 235 238 239 240 | stoweidlem54 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) | 
						
							| 242 | 241 | ex | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 243 | 242 | exlimdv | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 244 | 243 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 245 | 170 244 | mpd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) |