| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem58.1 | ⊢ Ⅎ 𝑡 𝐷 | 
						
							| 2 |  | stoweidlem58.2 | ⊢ Ⅎ 𝑡 𝑈 | 
						
							| 3 |  | stoweidlem58.3 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 4 |  | stoweidlem58.4 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 5 |  | stoweidlem58.5 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 6 |  | stoweidlem58.6 | ⊢ 𝐶  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 7 |  | stoweidlem58.7 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 8 |  | stoweidlem58.8 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐶 ) | 
						
							| 9 |  | stoweidlem58.9 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 10 |  | stoweidlem58.10 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 11 |  | stoweidlem58.11 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑎 )  ∈  𝐴 ) | 
						
							| 12 |  | stoweidlem58.12 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 13 |  | stoweidlem58.13 | ⊢ ( 𝜑  →  𝐵  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 14 |  | stoweidlem58.14 | ⊢ ( 𝜑  →  𝐷  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 15 |  | stoweidlem58.15 | ⊢ ( 𝜑  →  ( 𝐵  ∩  𝐷 )  =  ∅ ) | 
						
							| 16 |  | stoweidlem58.16 | ⊢ 𝑈  =  ( 𝑇  ∖  𝐵 ) | 
						
							| 17 |  | stoweidlem58.17 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 18 |  | stoweidlem58.18 | ⊢ ( 𝜑  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 19 | 1 | nfeq1 | ⊢ Ⅎ 𝑡 𝐷  =  ∅ | 
						
							| 20 | 3 19 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝐷  =  ∅ ) | 
						
							| 21 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  1 )  =  ( 𝑡  ∈  𝑇  ↦  1 ) | 
						
							| 22 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐷  =  ∅ )  ∧  𝑎  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑎 )  ∈  𝐴 ) | 
						
							| 23 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  =  ∅ )  →  𝐵  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 24 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  =  ∅ )  →  𝐸  ∈  ℝ+ ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐷  =  ∅ )  →  𝐷  =  ∅ ) | 
						
							| 26 | 1 20 21 5 22 23 24 25 | stoweidlem18 | ⊢ ( ( 𝜑  ∧  𝐷  =  ∅ )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑡 ∅ | 
						
							| 28 | 1 27 | nfne | ⊢ Ⅎ 𝑡 𝐷  ≠  ∅ | 
						
							| 29 | 3 28 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝐷  ≠  ∅ ) | 
						
							| 30 |  | eqid | ⊢ { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  =  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } | 
						
							| 31 |  | eqid | ⊢ { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) }  =  { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) } | 
						
							| 32 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ≠  ∅ )  →  𝐽  ∈  Comp ) | 
						
							| 33 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ≠  ∅ )  →  𝐴  ⊆  𝐶 ) | 
						
							| 34 | 9 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝐷  ≠  ∅ )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 35 | 10 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝐷  ≠  ∅ )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 36 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐷  ≠  ∅ )  ∧  𝑎  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑎 )  ∈  𝐴 ) | 
						
							| 37 | 12 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐷  ≠  ∅ )  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 38 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ≠  ∅ )  →  𝐵  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 39 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ≠  ∅ )  →  𝐷  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 40 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ≠  ∅ )  →  ( 𝐵  ∩  𝐷 )  =  ∅ ) | 
						
							| 41 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐷  ≠  ∅ )  →  𝐷  ≠  ∅ ) | 
						
							| 42 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ≠  ∅ )  →  𝐸  ∈  ℝ+ ) | 
						
							| 43 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ≠  ∅ )  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 44 | 1 2 29 30 31 4 5 6 16 32 33 34 35 36 37 38 39 40 41 42 43 | stoweidlem57 | ⊢ ( ( 𝜑  ∧  𝐷  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) | 
						
							| 45 | 26 44 | pm2.61dane | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) |