Metamath Proof Explorer


Theorem stoweidlem58

Description: This theorem proves Lemma 2 in BrosowskiDeutsh p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem58.1 _tD
stoweidlem58.2 _tU
stoweidlem58.3 tφ
stoweidlem58.4 K=topGenran.
stoweidlem58.5 T=J
stoweidlem58.6 C=JCnK
stoweidlem58.7 φJComp
stoweidlem58.8 φAC
stoweidlem58.9 φfAgAtTft+gtA
stoweidlem58.10 φfAgAtTftgtA
stoweidlem58.11 φatTaA
stoweidlem58.12 φrTtTrtqAqrqt
stoweidlem58.13 φBClsdJ
stoweidlem58.14 φDClsdJ
stoweidlem58.15 φBD=
stoweidlem58.16 U=TB
stoweidlem58.17 φE+
stoweidlem58.18 φE<13
Assertion stoweidlem58 φxAtT0xtxt1tDxt<EtB1E<xt

Proof

Step Hyp Ref Expression
1 stoweidlem58.1 _tD
2 stoweidlem58.2 _tU
3 stoweidlem58.3 tφ
4 stoweidlem58.4 K=topGenran.
5 stoweidlem58.5 T=J
6 stoweidlem58.6 C=JCnK
7 stoweidlem58.7 φJComp
8 stoweidlem58.8 φAC
9 stoweidlem58.9 φfAgAtTft+gtA
10 stoweidlem58.10 φfAgAtTftgtA
11 stoweidlem58.11 φatTaA
12 stoweidlem58.12 φrTtTrtqAqrqt
13 stoweidlem58.13 φBClsdJ
14 stoweidlem58.14 φDClsdJ
15 stoweidlem58.15 φBD=
16 stoweidlem58.16 U=TB
17 stoweidlem58.17 φE+
18 stoweidlem58.18 φE<13
19 1 nfeq1 tD=
20 3 19 nfan tφD=
21 eqid tT1=tT1
22 11 adantlr φD=atTaA
23 13 adantr φD=BClsdJ
24 17 adantr φD=E+
25 simpr φD=D=
26 1 20 21 5 22 23 24 25 stoweidlem18 φD=xAtT0xtxt1tDxt<EtB1E<xt
27 nfcv _t
28 1 27 nfne tD
29 3 28 nfan tφD
30 eqid hA|tT0htht1=hA|tT0htht1
31 eqid wJ|e+hAtT0htht1twht<etTU1e<ht=wJ|e+hAtT0htht1twht<etTU1e<ht
32 7 adantr φDJComp
33 8 adantr φDAC
34 9 3adant1r φDfAgAtTft+gtA
35 10 3adant1r φDfAgAtTftgtA
36 11 adantlr φDatTaA
37 12 adantlr φDrTtTrtqAqrqt
38 13 adantr φDBClsdJ
39 14 adantr φDDClsdJ
40 15 adantr φDBD=
41 simpr φDD
42 17 adantr φDE+
43 18 adantr φDE<13
44 1 2 29 30 31 4 5 6 16 32 33 34 35 36 37 38 39 40 41 42 43 stoweidlem57 φDxAtT0xtxt1tDxt<EtB1E<xt
45 26 44 pm2.61dane φxAtT0xtxt1tDxt<EtB1E<xt