Description: This theorem proves Lemma 2 in BrosowskiDeutsh p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem58.1 | |
|
stoweidlem58.2 | |
||
stoweidlem58.3 | |
||
stoweidlem58.4 | |
||
stoweidlem58.5 | |
||
stoweidlem58.6 | |
||
stoweidlem58.7 | |
||
stoweidlem58.8 | |
||
stoweidlem58.9 | |
||
stoweidlem58.10 | |
||
stoweidlem58.11 | |
||
stoweidlem58.12 | |
||
stoweidlem58.13 | |
||
stoweidlem58.14 | |
||
stoweidlem58.15 | |
||
stoweidlem58.16 | |
||
stoweidlem58.17 | |
||
stoweidlem58.18 | |
||
Assertion | stoweidlem58 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem58.1 | |
|
2 | stoweidlem58.2 | |
|
3 | stoweidlem58.3 | |
|
4 | stoweidlem58.4 | |
|
5 | stoweidlem58.5 | |
|
6 | stoweidlem58.6 | |
|
7 | stoweidlem58.7 | |
|
8 | stoweidlem58.8 | |
|
9 | stoweidlem58.9 | |
|
10 | stoweidlem58.10 | |
|
11 | stoweidlem58.11 | |
|
12 | stoweidlem58.12 | |
|
13 | stoweidlem58.13 | |
|
14 | stoweidlem58.14 | |
|
15 | stoweidlem58.15 | |
|
16 | stoweidlem58.16 | |
|
17 | stoweidlem58.17 | |
|
18 | stoweidlem58.18 | |
|
19 | 1 | nfeq1 | |
20 | 3 19 | nfan | |
21 | eqid | |
|
22 | 11 | adantlr | |
23 | 13 | adantr | |
24 | 17 | adantr | |
25 | simpr | |
|
26 | 1 20 21 5 22 23 24 25 | stoweidlem18 | |
27 | nfcv | |
|
28 | 1 27 | nfne | |
29 | 3 28 | nfan | |
30 | eqid | |
|
31 | eqid | |
|
32 | 7 | adantr | |
33 | 8 | adantr | |
34 | 9 | 3adant1r | |
35 | 10 | 3adant1r | |
36 | 11 | adantlr | |
37 | 12 | adantlr | |
38 | 13 | adantr | |
39 | 14 | adantr | |
40 | 15 | adantr | |
41 | simpr | |
|
42 | 17 | adantr | |
43 | 18 | adantr | |
44 | 1 2 29 30 31 4 5 6 16 32 33 34 35 36 37 38 39 40 41 42 43 | stoweidlem57 | |
45 | 26 44 | pm2.61dane | |