Metamath Proof Explorer


Theorem stoweidlem18

Description: This theorem proves Lemma 2 in BrosowskiDeutsh p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem18.1 _ t D
stoweidlem18.2 t φ
stoweidlem18.3 F = t T 1
stoweidlem18.4 T = J
stoweidlem18.5 φ a t T a A
stoweidlem18.6 φ B Clsd J
stoweidlem18.7 φ E +
stoweidlem18.8 φ D =
Assertion stoweidlem18 φ x A t T 0 x t x t 1 t D x t < E t B 1 E < x t

Proof

Step Hyp Ref Expression
1 stoweidlem18.1 _ t D
2 stoweidlem18.2 t φ
3 stoweidlem18.3 F = t T 1
4 stoweidlem18.4 T = J
5 stoweidlem18.5 φ a t T a A
6 stoweidlem18.6 φ B Clsd J
7 stoweidlem18.7 φ E +
8 stoweidlem18.8 φ D =
9 1re 1
10 5 stoweidlem4 φ 1 t T 1 A
11 9 10 mpan2 φ t T 1 A
12 3 11 eqeltrid φ F A
13 0le1 0 1
14 simpr φ t T t T
15 3 fvmpt2 t T 1 F t = 1
16 14 9 15 sylancl φ t T F t = 1
17 13 16 breqtrrid φ t T 0 F t
18 1le1 1 1
19 16 18 eqbrtrdi φ t T F t 1
20 17 19 jca φ t T 0 F t F t 1
21 20 ex φ t T 0 F t F t 1
22 2 21 ralrimi φ t T 0 F t F t 1
23 nfcv _ t
24 1 23 nfeq t D =
25 24 rzalf D = t D F t < E
26 8 25 syl φ t D F t < E
27 1red φ 1
28 27 7 ltsubrpd φ 1 E < 1
29 28 adantr φ t B 1 E < 1
30 4 cldss B Clsd J B T
31 6 30 syl φ B T
32 31 sselda φ t B t T
33 32 9 15 sylancl φ t B F t = 1
34 29 33 breqtrrd φ t B 1 E < F t
35 34 ex φ t B 1 E < F t
36 2 35 ralrimi φ t B 1 E < F t
37 nfcv _ t x
38 nfmpt1 _ t t T 1
39 3 38 nfcxfr _ t F
40 37 39 nfeq t x = F
41 fveq1 x = F x t = F t
42 41 breq2d x = F 0 x t 0 F t
43 41 breq1d x = F x t 1 F t 1
44 42 43 anbi12d x = F 0 x t x t 1 0 F t F t 1
45 40 44 ralbid x = F t T 0 x t x t 1 t T 0 F t F t 1
46 41 breq1d x = F x t < E F t < E
47 40 46 ralbid x = F t D x t < E t D F t < E
48 41 breq2d x = F 1 E < x t 1 E < F t
49 40 48 ralbid x = F t B 1 E < x t t B 1 E < F t
50 45 47 49 3anbi123d x = F t T 0 x t x t 1 t D x t < E t B 1 E < x t t T 0 F t F t 1 t D F t < E t B 1 E < F t
51 50 rspcev F A t T 0 F t F t 1 t D F t < E t B 1 E < F t x A t T 0 x t x t 1 t D x t < E t B 1 E < x t
52 12 22 26 36 51 syl13anc φ x A t T 0 x t x t 1 t D x t < E t B 1 E < x t