| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem19.1 |
|
| 2 |
|
stoweidlem19.2 |
|
| 3 |
|
stoweidlem19.3 |
|
| 4 |
|
stoweidlem19.4 |
|
| 5 |
|
stoweidlem19.5 |
|
| 6 |
|
stoweidlem19.6 |
|
| 7 |
|
stoweidlem19.7 |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
mpteq2dv |
|
| 10 |
9
|
eleq1d |
|
| 11 |
10
|
imbi2d |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
mpteq2dv |
|
| 14 |
13
|
eleq1d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
mpteq2dv |
|
| 18 |
17
|
eleq1d |
|
| 19 |
18
|
imbi2d |
|
| 20 |
|
oveq2 |
|
| 21 |
20
|
mpteq2dv |
|
| 22 |
21
|
eleq1d |
|
| 23 |
22
|
imbi2d |
|
| 24 |
6
|
ancli |
|
| 25 |
|
eleq1 |
|
| 26 |
25
|
anbi2d |
|
| 27 |
|
feq1 |
|
| 28 |
26 27
|
imbi12d |
|
| 29 |
28 3
|
vtoclg |
|
| 30 |
6 24 29
|
sylc |
|
| 31 |
30
|
ffvelcdmda |
|
| 32 |
|
recn |
|
| 33 |
|
exp0 |
|
| 34 |
31 32 33
|
3syl |
|
| 35 |
34
|
eqcomd |
|
| 36 |
2 35
|
mpteq2da |
|
| 37 |
|
1re |
|
| 38 |
5
|
stoweidlem4 |
|
| 39 |
37 38
|
mpan2 |
|
| 40 |
36 39
|
eqeltrrd |
|
| 41 |
|
simpr |
|
| 42 |
|
simpll |
|
| 43 |
|
simplr |
|
| 44 |
41 43
|
mpd |
|
| 45 |
|
nfv |
|
| 46 |
|
nfmpt1 |
|
| 47 |
46
|
nfel1 |
|
| 48 |
2 45 47
|
nf3an |
|
| 49 |
|
simpl1 |
|
| 50 |
|
simpr |
|
| 51 |
31
|
recnd |
|
| 52 |
49 50 51
|
syl2anc |
|
| 53 |
|
simpl2 |
|
| 54 |
52 53
|
expp1d |
|
| 55 |
48 54
|
mpteq2da |
|
| 56 |
31
|
3adant2 |
|
| 57 |
|
simp2 |
|
| 58 |
56 57
|
reexpcld |
|
| 59 |
49 53 50 58
|
syl3anc |
|
| 60 |
|
eqid |
|
| 61 |
60
|
fvmpt2 |
|
| 62 |
61
|
eqcomd |
|
| 63 |
50 59 62
|
syl2anc |
|
| 64 |
63
|
oveq1d |
|
| 65 |
48 64
|
mpteq2da |
|
| 66 |
6
|
adantr |
|
| 67 |
46
|
nfeq2 |
|
| 68 |
1
|
nfeq2 |
|
| 69 |
67 68 4
|
stoweidlem6 |
|
| 70 |
66 69
|
mpd3an3 |
|
| 71 |
70
|
3adant2 |
|
| 72 |
65 71
|
eqeltrd |
|
| 73 |
55 72
|
eqeltrd |
|
| 74 |
41 42 44 73
|
syl3anc |
|
| 75 |
74
|
exp31 |
|
| 76 |
11 15 19 23 40 75
|
nn0ind |
|
| 77 |
7 76
|
mpcom |
|