| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem19.1 | ⊢ Ⅎ 𝑡 𝐹 | 
						
							| 2 |  | stoweidlem19.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem19.3 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 4 |  | stoweidlem19.4 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 5 |  | stoweidlem19.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 6 |  | stoweidlem19.6 | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 7 |  | stoweidlem19.7 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑛  =  0  →  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 )  =  ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) ) | 
						
							| 9 | 8 | mpteq2dv | ⊢ ( 𝑛  =  0  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) ) ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝑛  =  0  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) )  ∈  𝐴 ) ) | 
						
							| 11 | 10 | imbi2d | ⊢ ( 𝑛  =  0  →  ( ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) )  ∈  𝐴 )  ↔  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) )  ∈  𝐴 ) ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 )  =  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) | 
						
							| 13 | 12 | mpteq2dv | ⊢ ( 𝑛  =  𝑚  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) )  ∈  𝐴 )  ↔  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 ) ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 )  =  ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚  +  1 ) ) ) | 
						
							| 17 | 16 | mpteq2dv | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚  +  1 ) ) ) ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚  +  1 ) ) )  ∈  𝐴 ) ) | 
						
							| 19 | 18 | imbi2d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) )  ∈  𝐴 )  ↔  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚  +  1 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 )  =  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) | 
						
							| 21 | 20 | mpteq2dv | ⊢ ( 𝑛  =  𝑁  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) )  ∈  𝐴 ) ) | 
						
							| 23 | 22 | imbi2d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) )  ∈  𝐴 )  ↔  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) )  ∈  𝐴 ) ) ) | 
						
							| 24 | 6 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝐹  ∈  𝐴 ) ) | 
						
							| 25 |  | eleq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  ∈  𝐴  ↔  𝐹  ∈  𝐴 ) ) | 
						
							| 26 | 25 | anbi2d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝐹  ∈  𝐴 ) ) ) | 
						
							| 27 |  | feq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  𝐹 : 𝑇 ⟶ ℝ ) ) | 
						
							| 28 | 26 27 | imbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  𝐹  ∈  𝐴 )  →  𝐹 : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 29 | 28 3 | vtoclg | ⊢ ( 𝐹  ∈  𝐴  →  ( ( 𝜑  ∧  𝐹  ∈  𝐴 )  →  𝐹 : 𝑇 ⟶ ℝ ) ) | 
						
							| 30 | 6 24 29 | sylc | ⊢ ( 𝜑  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 31 | 30 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 32 |  | recn | ⊢ ( ( 𝐹 ‘ 𝑡 )  ∈  ℝ  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 33 |  | exp0 | ⊢ ( ( 𝐹 ‘ 𝑡 )  ∈  ℂ  →  ( ( 𝐹 ‘ 𝑡 ) ↑ 0 )  =  1 ) | 
						
							| 34 | 31 32 33 | 3syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 ) ↑ 0 )  =  1 ) | 
						
							| 35 | 34 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  1  =  ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) ) | 
						
							| 36 | 2 35 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  1 )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) ) ) | 
						
							| 37 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 38 | 5 | stoweidlem4 | ⊢ ( ( 𝜑  ∧  1  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  1 )  ∈  𝐴 ) | 
						
							| 39 | 37 38 | mpan2 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  1 )  ∈  𝐴 ) | 
						
							| 40 | 36 39 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) )  ∈  𝐴 ) | 
						
							| 41 |  | simpr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 ) )  ∧  𝜑 )  →  𝜑 ) | 
						
							| 42 |  | simpll | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 ) )  ∧  𝜑 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 43 |  | simplr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 ) )  ∧  𝜑 )  →  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 ) ) | 
						
							| 44 | 41 43 | mpd | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 ) )  ∧  𝜑 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 ) | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑡 𝑚  ∈  ℕ0 | 
						
							| 46 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) | 
						
							| 47 | 46 | nfel1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 | 
						
							| 48 | 2 45 47 | nf3an | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 ) | 
						
							| 49 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝜑 ) | 
						
							| 50 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 51 | 31 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 52 | 49 50 51 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 53 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 54 | 52 53 | expp1d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 55 | 48 54 | mpteq2da | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚  +  1 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) ) | 
						
							| 56 | 31 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 57 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  𝑡  ∈  𝑇 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 58 | 56 57 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 )  ∈  ℝ ) | 
						
							| 59 | 49 53 50 58 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 )  ∈  ℝ ) | 
						
							| 60 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) | 
						
							| 61 | 60 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 )  ∈  ℝ )  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 )  =  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) | 
						
							| 62 | 61 | eqcomd | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 )  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 )  =  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 ) ) | 
						
							| 63 | 50 59 62 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 )  =  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 ) ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 )  ·  ( 𝐹 ‘ 𝑡 ) )  =  ( ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 65 | 48 64 | mpteq2da | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) ) | 
						
							| 66 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  →  𝐹  ∈  𝐴 ) | 
						
							| 67 | 46 | nfeq2 | ⊢ Ⅎ 𝑡 𝑓  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) | 
						
							| 68 | 1 | nfeq2 | ⊢ Ⅎ 𝑡 𝑔  =  𝐹 | 
						
							| 69 | 67 68 4 | stoweidlem6 | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴  ∧  𝐹  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 70 | 66 69 | mpd3an3 | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 71 | 70 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 72 | 65 71 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 73 | 55 72 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚  +  1 ) ) )  ∈  𝐴 ) | 
						
							| 74 | 41 42 44 73 | syl3anc | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 ) )  ∧  𝜑 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚  +  1 ) ) )  ∈  𝐴 ) | 
						
							| 75 | 74 | exp31 | ⊢ ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) )  ∈  𝐴 )  →  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚  +  1 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 76 | 11 15 19 23 40 75 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) )  ∈  𝐴 ) ) | 
						
							| 77 | 7 76 | mpcom | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) )  ∈  𝐴 ) |