| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem20.1 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 2 |  | stoweidlem20.2 | ⊢ 𝐹  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 3 |  | stoweidlem20.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 4 |  | stoweidlem20.4 | ⊢ ( 𝜑  →  𝐺 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) | 
						
							| 5 |  | stoweidlem20.5 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 6 |  | stoweidlem20.6 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 7 | 3 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 8 | 7 | leidd | ⊢ ( 𝜑  →  𝑀  ≤  𝑀 ) | 
						
							| 9 | 8 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝑀  ≤  𝑀 ) ) | 
						
							| 10 |  | eleq1 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑛  ∈  ℕ  ↔  𝑀  ∈  ℕ ) ) | 
						
							| 11 |  | breq1 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑛  ≤  𝑀  ↔  𝑀  ≤  𝑀 ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( 𝑛  =  𝑀  →  ( ( 𝜑  ∧  𝑛  ≤  𝑀 )  ↔  ( 𝜑  ∧  𝑀  ≤  𝑀 ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑛  =  𝑀  →  ( 1 ... 𝑛 )  =  ( 1 ... 𝑀 ) ) | 
						
							| 14 | 13 | sumeq1d | ⊢ ( 𝑛  =  𝑀  →  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 15 | 14 | mpteq2dv | ⊢ ( 𝑛  =  𝑀  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( 𝑛  =  𝑀  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) | 
						
							| 17 | 12 16 | imbi12d | ⊢ ( 𝑛  =  𝑀  →  ( ( ( 𝜑  ∧  𝑛  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝑀  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) ) | 
						
							| 18 | 10 17 | imbi12d | ⊢ ( 𝑛  =  𝑀  →  ( ( 𝑛  ∈  ℕ  →  ( ( 𝜑  ∧  𝑛  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) )  ↔  ( 𝑀  ∈  ℕ  →  ( ( 𝜑  ∧  𝑀  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) ) ) | 
						
							| 19 |  | breq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥  ≤  𝑀  ↔  1  ≤  𝑀 ) ) | 
						
							| 20 | 19 | anbi2d | ⊢ ( 𝑥  =  1  →  ( ( 𝜑  ∧  𝑥  ≤  𝑀 )  ↔  ( 𝜑  ∧  1  ≤  𝑀 ) ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑥  =  1  →  ( 1 ... 𝑥 )  =  ( 1 ... 1 ) ) | 
						
							| 22 | 21 | sumeq1d | ⊢ ( 𝑥  =  1  →  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  Σ 𝑖  ∈  ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 23 | 22 | mpteq2dv | ⊢ ( 𝑥  =  1  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 24 | 23 | eleq1d | ⊢ ( 𝑥  =  1  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) | 
						
							| 25 | 20 24 | imbi12d | ⊢ ( 𝑥  =  1  →  ( ( ( 𝜑  ∧  𝑥  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  1  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) ) | 
						
							| 26 |  | breq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ≤  𝑀  ↔  𝑦  ≤  𝑀 ) ) | 
						
							| 27 | 26 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  𝑥  ≤  𝑀 )  ↔  ( 𝜑  ∧  𝑦  ≤  𝑀 ) ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 1 ... 𝑥 )  =  ( 1 ... 𝑦 ) ) | 
						
							| 29 | 28 | sumeq1d | ⊢ ( 𝑥  =  𝑦  →  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 30 | 29 | mpteq2dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 31 | 30 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) | 
						
							| 32 | 27 31 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝑦  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) ) | 
						
							| 33 |  | breq1 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑥  ≤  𝑀  ↔  ( 𝑦  +  1 )  ≤  𝑀 ) ) | 
						
							| 34 | 33 | anbi2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝜑  ∧  𝑥  ≤  𝑀 )  ↔  ( 𝜑  ∧  ( 𝑦  +  1 )  ≤  𝑀 ) ) ) | 
						
							| 35 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 1 ... 𝑥 )  =  ( 1 ... ( 𝑦  +  1 ) ) ) | 
						
							| 36 | 35 | sumeq1d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  Σ 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 37 | 36 | mpteq2dv | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 38 | 37 | eleq1d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) | 
						
							| 39 | 34 38 | imbi12d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( ( 𝜑  ∧  𝑥  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) ) | 
						
							| 40 |  | breq1 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑥  ≤  𝑀  ↔  𝑛  ≤  𝑀 ) ) | 
						
							| 41 | 40 | anbi2d | ⊢ ( 𝑥  =  𝑛  →  ( ( 𝜑  ∧  𝑥  ≤  𝑀 )  ↔  ( 𝜑  ∧  𝑛  ≤  𝑀 ) ) ) | 
						
							| 42 |  | oveq2 | ⊢ ( 𝑥  =  𝑛  →  ( 1 ... 𝑥 )  =  ( 1 ... 𝑛 ) ) | 
						
							| 43 | 42 | sumeq1d | ⊢ ( 𝑥  =  𝑛  →  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 44 | 43 | mpteq2dv | ⊢ ( 𝑥  =  𝑛  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 45 | 44 | eleq1d | ⊢ ( 𝑥  =  𝑛  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) | 
						
							| 46 | 41 45 | imbi12d | ⊢ ( 𝑥  =  𝑛  →  ( ( ( 𝜑  ∧  𝑥  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝑛  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) ) | 
						
							| 47 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 48 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 49 | 3 48 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 50 |  | eluzfz1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 51 | 49 50 | syl | ⊢ ( 𝜑  →  1  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 52 | 4 51 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 1 )  ∈  𝐴 ) | 
						
							| 53 | 52 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  ( 𝐺 ‘ 1 )  ∈  𝐴 ) ) | 
						
							| 54 |  | eleq1 | ⊢ ( 𝑓  =  ( 𝐺 ‘ 1 )  →  ( 𝑓  ∈  𝐴  ↔  ( 𝐺 ‘ 1 )  ∈  𝐴 ) ) | 
						
							| 55 | 54 | anbi2d | ⊢ ( 𝑓  =  ( 𝐺 ‘ 1 )  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ↔  ( 𝜑  ∧  ( 𝐺 ‘ 1 )  ∈  𝐴 ) ) ) | 
						
							| 56 |  | feq1 | ⊢ ( 𝑓  =  ( 𝐺 ‘ 1 )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  ( 𝐺 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 57 | 55 56 | imbi12d | ⊢ ( 𝑓  =  ( 𝐺 ‘ 1 )  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  ( 𝐺 ‘ 1 )  ∈  𝐴 )  →  ( 𝐺 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 58 | 57 6 | vtoclg | ⊢ ( ( 𝐺 ‘ 1 )  ∈  𝐴  →  ( ( 𝜑  ∧  ( 𝐺 ‘ 1 )  ∈  𝐴 )  →  ( 𝐺 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 59 | 52 53 58 | sylc | ⊢ ( 𝜑  →  ( 𝐺 ‘ 1 ) : 𝑇 ⟶ ℝ ) | 
						
							| 60 | 59 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 1 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 61 | 60 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 1 ) ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑖  =  1  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 63 | 62 | fveq1d | ⊢ ( 𝑖  =  1  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) | 
						
							| 64 | 63 | fsum1 | ⊢ ( ( 1  ∈  ℤ  ∧  ( ( 𝐺 ‘ 1 ) ‘ 𝑡 )  ∈  ℂ )  →  Σ 𝑖  ∈  ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) | 
						
							| 65 | 47 61 64 | sylancr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) | 
						
							| 66 | 1 65 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) ) | 
						
							| 67 | 59 | feqmptd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 1 )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) ) | 
						
							| 68 | 66 67 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 69 | 68 52 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝜑  ∧  1  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) | 
						
							| 71 |  | simprl | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  ( ( 𝜑  ∧  𝑦  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) )  ∧  ( 𝜑  ∧  ( 𝑦  +  1 )  ≤  𝑀 ) )  →  𝜑 ) | 
						
							| 72 |  | simpll | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  ( ( 𝜑  ∧  𝑦  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) )  ∧  ( 𝜑  ∧  ( 𝑦  +  1 )  ≤  𝑀 ) )  →  𝑦  ∈  ℕ ) | 
						
							| 73 |  | simprr | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  ( ( 𝜑  ∧  𝑦  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) )  ∧  ( 𝜑  ∧  ( 𝑦  +  1 )  ≤  𝑀 ) )  →  ( 𝑦  +  1 )  ≤  𝑀 ) | 
						
							| 74 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  𝜑 ) | 
						
							| 75 |  | nnre | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℝ ) | 
						
							| 76 | 75 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  𝑦  ∈  ℝ ) | 
						
							| 77 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  1  ∈  ℝ ) | 
						
							| 78 | 76 77 | readdcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  ( 𝑦  +  1 )  ∈  ℝ ) | 
						
							| 79 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  𝑀  ∈  ℕ ) | 
						
							| 80 | 79 | nnred | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 81 | 76 | lep1d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  𝑦  ≤  ( 𝑦  +  1 ) ) | 
						
							| 82 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  ( 𝑦  +  1 )  ≤  𝑀 ) | 
						
							| 83 | 76 78 80 81 82 | letrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  𝑦  ≤  𝑀 ) | 
						
							| 84 | 74 83 | jca | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  ( 𝜑  ∧  𝑦  ≤  𝑀 ) ) | 
						
							| 85 | 71 72 73 84 | syl3anc | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  ( ( 𝜑  ∧  𝑦  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) )  ∧  ( 𝜑  ∧  ( 𝑦  +  1 )  ≤  𝑀 ) )  →  ( 𝜑  ∧  𝑦  ≤  𝑀 ) ) | 
						
							| 86 |  | simplr | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  ( ( 𝜑  ∧  𝑦  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) )  ∧  ( 𝜑  ∧  ( 𝑦  +  1 )  ≤  𝑀 ) )  →  ( ( 𝜑  ∧  𝑦  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) | 
						
							| 87 | 85 86 | mpd | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  ( ( 𝜑  ∧  𝑦  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) )  ∧  ( 𝜑  ∧  ( 𝑦  +  1 )  ≤  𝑀 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) | 
						
							| 88 |  | nfv | ⊢ Ⅎ 𝑡 𝑦  ∈  ℕ | 
						
							| 89 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝑦  +  1 )  ≤  𝑀 | 
						
							| 90 | 1 88 89 | nf3an | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 ) | 
						
							| 91 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  →  𝑦  ∈  ℕ ) | 
						
							| 92 | 91 48 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  →  𝑦  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 93 |  | simpll1 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  𝜑 ) | 
						
							| 94 |  | 1zzd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  1  ∈  ℤ ) | 
						
							| 95 | 3 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 96 | 95 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 97 | 96 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 98 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 99 | 98 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  𝑖  ∈  ℤ ) | 
						
							| 100 |  | elfzle1 | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) )  →  1  ≤  𝑖 ) | 
						
							| 101 | 100 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  1  ≤  𝑖 ) | 
						
							| 102 | 98 | zred | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 103 | 102 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  𝑖  ∈  ℝ ) | 
						
							| 104 | 78 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  ( 𝑦  +  1 )  ∈  ℝ ) | 
						
							| 105 | 80 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 106 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) )  →  𝑖  ≤  ( 𝑦  +  1 ) ) | 
						
							| 107 | 106 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  𝑖  ≤  ( 𝑦  +  1 ) ) | 
						
							| 108 |  | simpll3 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  ( 𝑦  +  1 )  ≤  𝑀 ) | 
						
							| 109 | 103 104 105 107 108 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  𝑖  ≤  𝑀 ) | 
						
							| 110 | 94 97 99 101 109 | elfzd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  𝑖  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 111 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 112 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 ) | 
						
							| 113 | 112 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 ) | 
						
							| 114 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  𝜑 ) | 
						
							| 115 | 114 113 | jca | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝜑  ∧  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 ) ) | 
						
							| 116 |  | eleq1 | ⊢ ( 𝑓  =  ( 𝐺 ‘ 𝑖 )  →  ( 𝑓  ∈  𝐴  ↔  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 ) ) | 
						
							| 117 | 116 | anbi2d | ⊢ ( 𝑓  =  ( 𝐺 ‘ 𝑖 )  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ↔  ( 𝜑  ∧  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 ) ) ) | 
						
							| 118 |  | feq1 | ⊢ ( 𝑓  =  ( 𝐺 ‘ 𝑖 )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 119 | 117 118 | imbi12d | ⊢ ( 𝑓  =  ( 𝐺 ‘ 𝑖 )  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 120 | 119 6 | vtoclg | ⊢ ( ( 𝐺 ‘ 𝑖 )  ∈  𝐴  →  ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 121 | 113 115 120 | sylc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) | 
						
							| 122 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 123 | 121 122 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 124 | 123 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 125 | 93 110 111 124 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 126 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑦  +  1 )  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ ( 𝑦  +  1 ) ) ) | 
						
							| 127 | 126 | fveq1d | ⊢ ( 𝑖  =  ( 𝑦  +  1 )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 128 | 92 125 127 | fsump1 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  +  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 129 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 130 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( 1 ... 𝑦 )  ∈  Fin ) | 
						
							| 131 |  | simpll1 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  𝜑 ) | 
						
							| 132 |  | 1zzd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  1  ∈  ℤ ) | 
						
							| 133 | 96 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 134 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 1 ... 𝑦 )  →  𝑖  ∈  ℤ ) | 
						
							| 135 | 134 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 136 |  | elfzle1 | ⊢ ( 𝑖  ∈  ( 1 ... 𝑦 )  →  1  ≤  𝑖 ) | 
						
							| 137 | 136 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  1  ≤  𝑖 ) | 
						
							| 138 | 134 | zred | ⊢ ( 𝑖  ∈  ( 1 ... 𝑦 )  →  𝑖  ∈  ℝ ) | 
						
							| 139 | 138 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 140 | 78 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  ( 𝑦  +  1 )  ∈  ℝ ) | 
						
							| 141 | 80 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 142 | 76 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 143 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( 1 ... 𝑦 )  →  𝑖  ≤  𝑦 ) | 
						
							| 144 | 143 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  𝑖  ≤  𝑦 ) | 
						
							| 145 |  | letrp1 | ⊢ ( ( 𝑖  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  𝑖  ≤  𝑦 )  →  𝑖  ≤  ( 𝑦  +  1 ) ) | 
						
							| 146 | 139 142 144 145 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  𝑖  ≤  ( 𝑦  +  1 ) ) | 
						
							| 147 |  | simpl3 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  ( 𝑦  +  1 )  ≤  𝑀 ) | 
						
							| 148 | 139 140 141 146 147 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  𝑖  ≤  𝑀 ) | 
						
							| 149 | 148 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  𝑖  ≤  𝑀 ) | 
						
							| 150 | 132 133 135 137 149 | elfzd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  𝑖  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 151 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 152 | 131 150 151 123 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑦 ) )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 153 | 130 152 | fsumrecl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 154 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 155 | 154 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ )  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  =  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 156 | 129 153 155 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  =  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 157 | 156 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) )  =  ( Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  +  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 158 | 128 157 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 159 | 90 158 | mpteq2da | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 160 | 159 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 161 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  1  ∈  ℤ ) | 
						
							| 162 |  | peano2nn | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝑦  +  1 )  ∈  ℕ ) | 
						
							| 163 | 162 | nnzd | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝑦  +  1 )  ∈  ℤ ) | 
						
							| 164 | 163 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  ( 𝑦  +  1 )  ∈  ℤ ) | 
						
							| 165 | 162 | nnge1d | ⊢ ( 𝑦  ∈  ℕ  →  1  ≤  ( 𝑦  +  1 ) ) | 
						
							| 166 | 165 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  1  ≤  ( 𝑦  +  1 ) ) | 
						
							| 167 | 161 96 164 166 82 | elfzd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  ( 𝑦  +  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 168 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  ( 𝑦  +  1 )  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ ( 𝑦  +  1 ) )  ∈  𝐴 ) | 
						
							| 169 | 74 167 168 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  ( 𝐺 ‘ ( 𝑦  +  1 ) )  ∈  𝐴 ) | 
						
							| 170 |  | eleq1 | ⊢ ( 𝑓  =  ( 𝐺 ‘ ( 𝑦  +  1 ) )  →  ( 𝑓  ∈  𝐴  ↔  ( 𝐺 ‘ ( 𝑦  +  1 ) )  ∈  𝐴 ) ) | 
						
							| 171 | 170 | anbi2d | ⊢ ( 𝑓  =  ( 𝐺 ‘ ( 𝑦  +  1 ) )  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ↔  ( 𝜑  ∧  ( 𝐺 ‘ ( 𝑦  +  1 ) )  ∈  𝐴 ) ) ) | 
						
							| 172 |  | feq1 | ⊢ ( 𝑓  =  ( 𝐺 ‘ ( 𝑦  +  1 ) )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  ( 𝐺 ‘ ( 𝑦  +  1 ) ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 173 | 171 172 | imbi12d | ⊢ ( 𝑓  =  ( 𝐺 ‘ ( 𝑦  +  1 ) )  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  ( 𝐺 ‘ ( 𝑦  +  1 ) )  ∈  𝐴 )  →  ( 𝐺 ‘ ( 𝑦  +  1 ) ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 174 | 173 6 | vtoclg | ⊢ ( ( 𝐺 ‘ ( 𝑦  +  1 ) )  ∈  𝐴  →  ( ( 𝜑  ∧  ( 𝐺 ‘ ( 𝑦  +  1 ) )  ∈  𝐴 )  →  ( 𝐺 ‘ ( 𝑦  +  1 ) ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 175 | 174 | anabsi7 | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ ( 𝑦  +  1 ) )  ∈  𝐴 )  →  ( 𝐺 ‘ ( 𝑦  +  1 ) ) : 𝑇 ⟶ ℝ ) | 
						
							| 176 | 74 169 175 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  ( 𝐺 ‘ ( 𝑦  +  1 ) ) : 𝑇 ⟶ ℝ ) | 
						
							| 177 | 176 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 178 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 179 | 178 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 )  ∈  ℝ )  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 )  =  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 180 | 129 177 179 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 )  =  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 181 | 180 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) )  =  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 182 | 90 181 | mpteq2da | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 183 | 182 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 184 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  →  𝜑 ) | 
						
							| 185 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) | 
						
							| 186 | 167 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  →  ( 𝑦  +  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 187 | 175 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ ( 𝑦  +  1 ) )  ∈  𝐴 )  →  ( 𝐺 ‘ ( 𝑦  +  1 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 188 | 168 187 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑦  +  1 )  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ ( 𝑦  +  1 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 189 | 188 168 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑦  +  1 )  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) )  ∈  𝐴 ) | 
						
							| 190 | 184 186 189 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) )  ∈  𝐴 ) | 
						
							| 191 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 192 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 193 | 5 191 192 | stoweidlem8 | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 194 | 184 185 190 193 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 195 | 183 194 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 )  +  ( ( 𝐺 ‘ ( 𝑦  +  1 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 196 | 160 195 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) | 
						
							| 197 | 71 72 73 87 196 | syl31anc | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  ( ( 𝜑  ∧  𝑦  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) )  ∧  ( 𝜑  ∧  ( 𝑦  +  1 )  ≤  𝑀 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) | 
						
							| 198 | 197 | exp31 | ⊢ ( 𝑦  ∈  ℕ  →  ( ( ( 𝜑  ∧  𝑦  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 )  →  ( ( 𝜑  ∧  ( 𝑦  +  1 )  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... ( 𝑦  +  1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) ) | 
						
							| 199 | 25 32 39 46 70 198 | nnind | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝜑  ∧  𝑛  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) | 
						
							| 200 | 18 199 | vtoclg | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  ∈  ℕ  →  ( ( 𝜑  ∧  𝑀  ≤  𝑀 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) ) ) | 
						
							| 201 | 3 3 9 200 | syl3c | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  𝐴 ) | 
						
							| 202 | 2 201 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) |