| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ltp1 | 
							⊢ ( 𝐵  ∈  ℝ  →  𝐵  <  ( 𝐵  +  1 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  <  ( 𝐵  +  1 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							peano2re | 
							⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵  +  1 )  ∈  ℝ )  | 
						
						
							| 4 | 
							
								3
							 | 
							ancli | 
							⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵  ∈  ℝ  ∧  ( 𝐵  +  1 )  ∈  ℝ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							lelttr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝐵  +  1 )  ∈  ℝ )  →  ( ( 𝐴  ≤  𝐵  ∧  𝐵  <  ( 𝐵  +  1 ) )  →  𝐴  <  ( 𝐵  +  1 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3expb | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  ( 𝐵  +  1 )  ∈  ℝ ) )  →  ( ( 𝐴  ≤  𝐵  ∧  𝐵  <  ( 𝐵  +  1 ) )  →  𝐴  <  ( 𝐵  +  1 ) ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  ≤  𝐵  ∧  𝐵  <  ( 𝐵  +  1 ) )  →  𝐴  <  ( 𝐵  +  1 ) ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							mpan2d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ≤  𝐵  →  𝐴  <  ( 𝐵  +  1 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3impia | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  𝐴  <  ( 𝐵  +  1 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							ltle | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  +  1 )  ∈  ℝ )  →  ( 𝐴  <  ( 𝐵  +  1 )  →  𝐴  ≤  ( 𝐵  +  1 ) ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  ( 𝐵  +  1 )  →  𝐴  ≤  ( 𝐵  +  1 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3adant3 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  <  ( 𝐵  +  1 )  →  𝐴  ≤  ( 𝐵  +  1 ) ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							mpd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  𝐴  ≤  ( 𝐵  +  1 ) )  |