| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem57.1 |
|
| 2 |
|
stoweidlem57.2 |
|
| 3 |
|
stoweidlem57.3 |
|
| 4 |
|
stoweidlem57.4 |
|
| 5 |
|
stoweidlem57.5 |
|
| 6 |
|
stoweidlem57.6 |
|
| 7 |
|
stoweidlem57.7 |
|
| 8 |
|
stoweidlem57.8 |
|
| 9 |
|
stoweidlem57.9 |
|
| 10 |
|
stoweidlem57.10 |
|
| 11 |
|
stoweidlem57.11 |
|
| 12 |
|
stoweidlem57.12 |
|
| 13 |
|
stoweidlem57.13 |
|
| 14 |
|
stoweidlem57.14 |
|
| 15 |
|
stoweidlem57.15 |
|
| 16 |
|
stoweidlem57.16 |
|
| 17 |
|
stoweidlem57.17 |
|
| 18 |
|
stoweidlem57.18 |
|
| 19 |
|
stoweidlem57.19 |
|
| 20 |
|
stoweidlem57.20 |
|
| 21 |
|
stoweidlem57.21 |
|
| 22 |
1
|
nfcri |
|
| 23 |
3 22
|
nfan |
|
| 24 |
10
|
adantr |
|
| 25 |
11
|
adantr |
|
| 26 |
12
|
3adant1r |
|
| 27 |
13
|
3adant1r |
|
| 28 |
14
|
adantlr |
|
| 29 |
15
|
adantlr |
|
| 30 |
|
cmptop |
|
| 31 |
7
|
iscld |
|
| 32 |
10 30 31
|
3syl |
|
| 33 |
16 32
|
mpbid |
|
| 34 |
33
|
simprd |
|
| 35 |
9 34
|
eqeltrid |
|
| 36 |
35
|
adantr |
|
| 37 |
7
|
cldss |
|
| 38 |
17 37
|
syl |
|
| 39 |
38
|
sselda |
|
| 40 |
|
disjr |
|
| 41 |
18 40
|
sylib |
|
| 42 |
41
|
r19.21bi |
|
| 43 |
39 42
|
eldifd |
|
| 44 |
43 9
|
eleqtrrdi |
|
| 45 |
2 23 6 24 7 8 25 26 27 28 29 36 44
|
stoweidlem56 |
|
| 46 |
|
simpl |
|
| 47 |
|
simprll |
|
| 48 |
|
simprr |
|
| 49 |
5
|
reqabi |
|
| 50 |
46 48 49
|
sylanbrc |
|
| 51 |
46 47 50
|
jca32 |
|
| 52 |
51
|
reximi2 |
|
| 53 |
|
rexex |
|
| 54 |
45 52 53
|
3syl |
|
| 55 |
|
nfcv |
|
| 56 |
|
nfrab1 |
|
| 57 |
5 56
|
nfcxfr |
|
| 58 |
55 57
|
elunif |
|
| 59 |
54 58
|
sylibr |
|
| 60 |
59
|
ex |
|
| 61 |
60
|
ssrdv |
|
| 62 |
|
cmpcld |
|
| 63 |
10 17 62
|
syl2anc |
|
| 64 |
10 30
|
syl |
|
| 65 |
7
|
cmpsub |
|
| 66 |
64 38 65
|
syl2anc |
|
| 67 |
63 66
|
mpbid |
|
| 68 |
|
ssrab2 |
|
| 69 |
5 68
|
eqsstri |
|
| 70 |
5 10
|
rabexd |
|
| 71 |
|
elpwg |
|
| 72 |
70 71
|
syl |
|
| 73 |
69 72
|
mpbiri |
|
| 74 |
|
unieq |
|
| 75 |
74
|
sseq2d |
|
| 76 |
|
pweq |
|
| 77 |
76
|
ineq1d |
|
| 78 |
77
|
rexeqdv |
|
| 79 |
75 78
|
imbi12d |
|
| 80 |
79
|
rspccva |
|
| 81 |
67 73 80
|
syl2anc |
|
| 82 |
61 81
|
mpd |
|
| 83 |
|
elinel1 |
|
| 84 |
|
elpwi |
|
| 85 |
84
|
ssdifssd |
|
| 86 |
|
vex |
|
| 87 |
|
difexg |
|
| 88 |
86 87
|
ax-mp |
|
| 89 |
88
|
elpw |
|
| 90 |
85 89
|
sylibr |
|
| 91 |
83 90
|
syl |
|
| 92 |
|
elinel2 |
|
| 93 |
|
diffi |
|
| 94 |
92 93
|
syl |
|
| 95 |
91 94
|
elind |
|
| 96 |
95
|
3ad2ant2 |
|
| 97 |
|
unidif0 |
|
| 98 |
97
|
sseq2i |
|
| 99 |
98
|
biimpri |
|
| 100 |
99
|
3ad2ant3 |
|
| 101 |
|
eldifsni |
|
| 102 |
101
|
rgen |
|
| 103 |
102
|
a1i |
|
| 104 |
|
unieq |
|
| 105 |
104
|
sseq2d |
|
| 106 |
|
raleq |
|
| 107 |
105 106
|
anbi12d |
|
| 108 |
107
|
rspcev |
|
| 109 |
96 100 103 108
|
syl12anc |
|
| 110 |
109
|
rexlimdv3a |
|
| 111 |
82 110
|
mpd |
|
| 112 |
|
nfv |
|
| 113 |
|
nfcv |
|
| 114 |
|
nfre1 |
|
| 115 |
113 114
|
nfralw |
|
| 116 |
|
nfcv |
|
| 117 |
115 116
|
nfrabw |
|
| 118 |
5 117
|
nfcxfr |
|
| 119 |
118
|
nfpw |
|
| 120 |
|
nfcv |
|
| 121 |
119 120
|
nfin |
|
| 122 |
121
|
nfcri |
|
| 123 |
|
nfv |
|
| 124 |
112 122 123
|
nf3an |
|
| 125 |
|
nfcv |
|
| 126 |
|
nfcv |
|
| 127 |
|
nfra1 |
|
| 128 |
|
nfra1 |
|
| 129 |
|
nfra1 |
|
| 130 |
127 128 129
|
nf3an |
|
| 131 |
126 130
|
nfrexw |
|
| 132 |
125 131
|
nfralw |
|
| 133 |
|
nfcv |
|
| 134 |
132 133
|
nfrabw |
|
| 135 |
5 134
|
nfcxfr |
|
| 136 |
135
|
nfpw |
|
| 137 |
|
nfcv |
|
| 138 |
136 137
|
nfin |
|
| 139 |
138
|
nfcri |
|
| 140 |
|
nfcv |
|
| 141 |
1 140
|
nfss |
|
| 142 |
|
nfv |
|
| 143 |
141 142
|
nfan |
|
| 144 |
3 139 143
|
nf3an |
|
| 145 |
|
nfv |
|
| 146 |
57
|
nfpw |
|
| 147 |
|
nfcv |
|
| 148 |
146 147
|
nfin |
|
| 149 |
148
|
nfcri |
|
| 150 |
|
nfv |
|
| 151 |
|
nfra1 |
|
| 152 |
150 151
|
nfan |
|
| 153 |
145 149 152
|
nf3an |
|
| 154 |
|
simp2 |
|
| 155 |
|
simp3l |
|
| 156 |
19
|
3ad2ant1 |
|
| 157 |
20
|
3ad2ant1 |
|
| 158 |
33
|
simpld |
|
| 159 |
158
|
3ad2ant1 |
|
| 160 |
70
|
3ad2ant1 |
|
| 161 |
|
retop |
|
| 162 |
6 161
|
eqeltri |
|
| 163 |
|
cnfex |
|
| 164 |
64 162 163
|
sylancl |
|
| 165 |
11 8
|
sseqtrdi |
|
| 166 |
164 165
|
ssexd |
|
| 167 |
166
|
3ad2ant1 |
|
| 168 |
124 144 153 9 4 5 154 155 156 157 159 160 167
|
stoweidlem39 |
|
| 169 |
168
|
rexlimdv3a |
|
| 170 |
111 169
|
mpd |
|
| 171 |
|
nfv |
|
| 172 |
|
nfv |
|
| 173 |
|
nfv |
|
| 174 |
|
nfv |
|
| 175 |
|
nfra1 |
|
| 176 |
174 175
|
nfan |
|
| 177 |
176
|
nfex |
|
| 178 |
172 173 177
|
nf3an |
|
| 179 |
171 178
|
nfan |
|
| 180 |
|
nfv |
|
| 181 |
3 180
|
nfan |
|
| 182 |
|
nfcv |
|
| 183 |
|
nfcv |
|
| 184 |
182 183 135
|
nff |
|
| 185 |
|
nfcv |
|
| 186 |
1 185
|
nfss |
|
| 187 |
|
nfcv |
|
| 188 |
127 126
|
nfrabw |
|
| 189 |
4 188
|
nfcxfr |
|
| 190 |
187 183 189
|
nff |
|
| 191 |
|
nfra1 |
|
| 192 |
|
nfra1 |
|
| 193 |
191 192
|
nfan |
|
| 194 |
183 193
|
nfralw |
|
| 195 |
190 194
|
nfan |
|
| 196 |
195
|
nfex |
|
| 197 |
184 186 196
|
nf3an |
|
| 198 |
181 197
|
nfan |
|
| 199 |
|
nfv |
|
| 200 |
|
nfv |
|
| 201 |
|
nfv |
|
| 202 |
|
nfe1 |
|
| 203 |
200 201 202
|
nf3an |
|
| 204 |
199 203
|
nfan |
|
| 205 |
|
nfv |
|
| 206 |
|
nfcv |
|
| 207 |
|
nfcv |
|
| 208 |
206 207 57
|
nff |
|
| 209 |
|
nfv |
|
| 210 |
|
nfv |
|
| 211 |
208 209 210
|
nf3an |
|
| 212 |
205 211
|
nfan |
|
| 213 |
|
eqid |
|
| 214 |
|
eqid |
|
| 215 |
|
eqid |
|
| 216 |
|
eqid |
|
| 217 |
|
simp1ll |
|
| 218 |
217 13
|
syld3an1 |
|
| 219 |
11
|
sselda |
|
| 220 |
6 7 8 219
|
fcnre |
|
| 221 |
220
|
ad4ant14 |
|
| 222 |
|
simplr |
|
| 223 |
|
simpr1 |
|
| 224 |
7
|
cldss |
|
| 225 |
16 224
|
syl |
|
| 226 |
225
|
ad2antrr |
|
| 227 |
|
simpr2 |
|
| 228 |
38
|
ad2antrr |
|
| 229 |
|
feq3 |
|
| 230 |
4 229
|
ax-mp |
|
| 231 |
230
|
biimpi |
|
| 232 |
231
|
anim1i |
|
| 233 |
232
|
eximi |
|
| 234 |
233
|
3ad2ant3 |
|
| 235 |
234
|
adantl |
|
| 236 |
10
|
uniexd |
|
| 237 |
7 236
|
eqeltrid |
|
| 238 |
237
|
ad2antrr |
|
| 239 |
20
|
ad2antrr |
|
| 240 |
21
|
ad2antrr |
|
| 241 |
179 198 204 212 7 213 214 215 216 5 218 221 222 223 226 227 228 235 238 239 240
|
stoweidlem54 |
|
| 242 |
241
|
ex |
|
| 243 |
242
|
exlimdv |
|
| 244 |
243
|
rexlimdva |
|
| 245 |
170 244
|
mpd |
|