Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem39.1 |
|
2 |
|
stoweidlem39.2 |
|
3 |
|
stoweidlem39.3 |
|
4 |
|
stoweidlem39.4 |
|
5 |
|
stoweidlem39.5 |
|
6 |
|
stoweidlem39.6 |
|
7 |
|
stoweidlem39.7 |
|
8 |
|
stoweidlem39.8 |
|
9 |
|
stoweidlem39.9 |
|
10 |
|
stoweidlem39.10 |
|
11 |
|
stoweidlem39.11 |
|
12 |
|
stoweidlem39.12 |
|
13 |
|
stoweidlem39.13 |
|
14 |
8 9
|
jca |
|
15 |
|
ssn0 |
|
16 |
|
unieq |
|
17 |
|
uni0 |
|
18 |
16 17
|
eqtrdi |
|
19 |
18
|
necon3i |
|
20 |
14 15 19
|
3syl |
|
21 |
20
|
neneqd |
|
22 |
|
elinel2 |
|
23 |
7 22
|
syl |
|
24 |
|
fz1f1o |
|
25 |
|
pm2.53 |
|
26 |
23 24 25
|
3syl |
|
27 |
21 26
|
mpd |
|
28 |
|
oveq2 |
|
29 |
28
|
f1oeq2d |
|
30 |
29
|
exbidv |
|
31 |
30
|
rspcev |
|
32 |
27 31
|
syl |
|
33 |
|
f1of |
|
34 |
33
|
adantl |
|
35 |
|
simpll |
|
36 |
|
elinel1 |
|
37 |
36
|
elpwid |
|
38 |
35 7 37
|
3syl |
|
39 |
34 38
|
fssd |
|
40 |
8
|
ad2antrr |
|
41 |
|
dff1o2 |
|
42 |
41
|
simp3bi |
|
43 |
42
|
unieqd |
|
44 |
43
|
adantl |
|
45 |
40 44
|
sseqtrrd |
|
46 |
|
nfv |
|
47 |
1 46
|
nfan |
|
48 |
|
nfv |
|
49 |
47 48
|
nfan |
|
50 |
|
nfv |
|
51 |
2 50
|
nfan |
|
52 |
|
nfv |
|
53 |
51 52
|
nfan |
|
54 |
|
nfv |
|
55 |
3 54
|
nfan |
|
56 |
|
nfv |
|
57 |
55 56
|
nfan |
|
58 |
|
eqid |
|
59 |
|
simplr |
|
60 |
|
simpr |
|
61 |
10
|
ad2antrr |
|
62 |
11
|
sselda |
|
63 |
|
notnot |
|
64 |
63
|
intnand |
|
65 |
64
|
adantl |
|
66 |
|
eldif |
|
67 |
65 66
|
sylnibr |
|
68 |
4
|
eleq2i |
|
69 |
67 68
|
sylnibr |
|
70 |
62 69
|
eldifd |
|
71 |
70
|
ralrimiva |
|
72 |
|
dfss3 |
|
73 |
71 72
|
sylibr |
|
74 |
73
|
ad2antrr |
|
75 |
12
|
ad2antrr |
|
76 |
13
|
ad2antrr |
|
77 |
23
|
ad2antrr |
|
78 |
|
mptfi |
|
79 |
|
rnfi |
|
80 |
77 78 79
|
3syl |
|
81 |
49 53 57 5 6 58 38 59 60 61 74 75 76 80
|
stoweidlem31 |
|
82 |
39 45 81
|
3jca |
|
83 |
82
|
ex |
|
84 |
83
|
eximdv |
|
85 |
84
|
reximdva |
|
86 |
32 85
|
mpd |
|