| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem39.1 | ⊢ Ⅎ ℎ 𝜑 | 
						
							| 2 |  | stoweidlem39.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem39.3 | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 4 |  | stoweidlem39.4 | ⊢ 𝑈  =  ( 𝑇  ∖  𝐵 ) | 
						
							| 5 |  | stoweidlem39.5 | ⊢ 𝑌  =  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } | 
						
							| 6 |  | stoweidlem39.6 | ⊢ 𝑊  =  { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) } | 
						
							| 7 |  | stoweidlem39.7 | ⊢ ( 𝜑  →  𝑟  ∈  ( 𝒫  𝑊  ∩  Fin ) ) | 
						
							| 8 |  | stoweidlem39.8 | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑟 ) | 
						
							| 9 |  | stoweidlem39.9 | ⊢ ( 𝜑  →  𝐷  ≠  ∅ ) | 
						
							| 10 |  | stoweidlem39.10 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 11 |  | stoweidlem39.11 | ⊢ ( 𝜑  →  𝐵  ⊆  𝑇 ) | 
						
							| 12 |  | stoweidlem39.12 | ⊢ ( 𝜑  →  𝑊  ∈  V ) | 
						
							| 13 |  | stoweidlem39.13 | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 14 | 8 9 | jca | ⊢ ( 𝜑  →  ( 𝐷  ⊆  ∪  𝑟  ∧  𝐷  ≠  ∅ ) ) | 
						
							| 15 |  | ssn0 | ⊢ ( ( 𝐷  ⊆  ∪  𝑟  ∧  𝐷  ≠  ∅ )  →  ∪  𝑟  ≠  ∅ ) | 
						
							| 16 |  | unieq | ⊢ ( 𝑟  =  ∅  →  ∪  𝑟  =  ∪  ∅ ) | 
						
							| 17 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 18 | 16 17 | eqtrdi | ⊢ ( 𝑟  =  ∅  →  ∪  𝑟  =  ∅ ) | 
						
							| 19 | 18 | necon3i | ⊢ ( ∪  𝑟  ≠  ∅  →  𝑟  ≠  ∅ ) | 
						
							| 20 | 14 15 19 | 3syl | ⊢ ( 𝜑  →  𝑟  ≠  ∅ ) | 
						
							| 21 | 20 | neneqd | ⊢ ( 𝜑  →  ¬  𝑟  =  ∅ ) | 
						
							| 22 |  | elinel2 | ⊢ ( 𝑟  ∈  ( 𝒫  𝑊  ∩  Fin )  →  𝑟  ∈  Fin ) | 
						
							| 23 | 7 22 | syl | ⊢ ( 𝜑  →  𝑟  ∈  Fin ) | 
						
							| 24 |  | fz1f1o | ⊢ ( 𝑟  ∈  Fin  →  ( 𝑟  =  ∅  ∨  ( ( ♯ ‘ 𝑟 )  ∈  ℕ  ∧  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) ) | 
						
							| 25 |  | pm2.53 | ⊢ ( ( 𝑟  =  ∅  ∨  ( ( ♯ ‘ 𝑟 )  ∈  ℕ  ∧  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) )  →  ( ¬  𝑟  =  ∅  →  ( ( ♯ ‘ 𝑟 )  ∈  ℕ  ∧  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) ) | 
						
							| 26 | 23 24 25 | 3syl | ⊢ ( 𝜑  →  ( ¬  𝑟  =  ∅  →  ( ( ♯ ‘ 𝑟 )  ∈  ℕ  ∧  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) ) | 
						
							| 27 | 21 26 | mpd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑟 )  ∈  ℕ  ∧  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑚  =  ( ♯ ‘ 𝑟 )  →  ( 1 ... 𝑚 )  =  ( 1 ... ( ♯ ‘ 𝑟 ) ) ) | 
						
							| 29 | 28 | f1oeq2d | ⊢ ( 𝑚  =  ( ♯ ‘ 𝑟 )  →  ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  ↔  𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) | 
						
							| 30 | 29 | exbidv | ⊢ ( 𝑚  =  ( ♯ ‘ 𝑟 )  →  ( ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  ↔  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) | 
						
							| 31 | 30 | rspcev | ⊢ ( ( ( ♯ ‘ 𝑟 )  ∈  ℕ  ∧  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 )  →  ∃ 𝑚  ∈  ℕ ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) | 
						
							| 32 | 27 31 | syl | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℕ ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) | 
						
							| 33 |  | f1of | ⊢ ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  →  𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑟 ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑟 ) | 
						
							| 35 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝜑 ) | 
						
							| 36 |  | elinel1 | ⊢ ( 𝑟  ∈  ( 𝒫  𝑊  ∩  Fin )  →  𝑟  ∈  𝒫  𝑊 ) | 
						
							| 37 | 36 | elpwid | ⊢ ( 𝑟  ∈  ( 𝒫  𝑊  ∩  Fin )  →  𝑟  ⊆  𝑊 ) | 
						
							| 38 | 35 7 37 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑟  ⊆  𝑊 ) | 
						
							| 39 | 34 38 | fssd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊 ) | 
						
							| 40 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝐷  ⊆  ∪  𝑟 ) | 
						
							| 41 |  | dff1o2 | ⊢ ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  ↔  ( 𝑣  Fn  ( 1 ... 𝑚 )  ∧  Fun  ◡ 𝑣  ∧  ran  𝑣  =  𝑟 ) ) | 
						
							| 42 | 41 | simp3bi | ⊢ ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  →  ran  𝑣  =  𝑟 ) | 
						
							| 43 | 42 | unieqd | ⊢ ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  →  ∪  ran  𝑣  =  ∪  𝑟 ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  ∪  ran  𝑣  =  ∪  𝑟 ) | 
						
							| 45 | 40 44 | sseqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝐷  ⊆  ∪  ran  𝑣 ) | 
						
							| 46 |  | nfv | ⊢ Ⅎ ℎ 𝑚  ∈  ℕ | 
						
							| 47 | 1 46 | nfan | ⊢ Ⅎ ℎ ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 48 |  | nfv | ⊢ Ⅎ ℎ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 | 
						
							| 49 | 47 48 | nfan | ⊢ Ⅎ ℎ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) | 
						
							| 50 |  | nfv | ⊢ Ⅎ 𝑡 𝑚  ∈  ℕ | 
						
							| 51 | 2 50 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 52 |  | nfv | ⊢ Ⅎ 𝑡 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 | 
						
							| 53 | 51 52 | nfan | ⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) | 
						
							| 54 |  | nfv | ⊢ Ⅎ 𝑤 𝑚  ∈  ℕ | 
						
							| 55 | 3 54 | nfan | ⊢ Ⅎ 𝑤 ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 56 |  | nfv | ⊢ Ⅎ 𝑤 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 | 
						
							| 57 | 55 56 | nfan | ⊢ Ⅎ 𝑤 ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) | 
						
							| 58 |  | eqid | ⊢ ( 𝑤  ∈  𝑟  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  =  ( 𝑤  ∈  𝑟  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 59 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑚  ∈  ℕ ) | 
						
							| 60 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) | 
						
							| 61 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝐸  ∈  ℝ+ ) | 
						
							| 62 | 11 | sselda | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  𝑇 ) | 
						
							| 63 |  | notnot | ⊢ ( 𝑏  ∈  𝐵  →  ¬  ¬  𝑏  ∈  𝐵 ) | 
						
							| 64 | 63 | intnand | ⊢ ( 𝑏  ∈  𝐵  →  ¬  ( 𝑏  ∈  𝑇  ∧  ¬  𝑏  ∈  𝐵 ) ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ¬  ( 𝑏  ∈  𝑇  ∧  ¬  𝑏  ∈  𝐵 ) ) | 
						
							| 66 |  | eldif | ⊢ ( 𝑏  ∈  ( 𝑇  ∖  𝐵 )  ↔  ( 𝑏  ∈  𝑇  ∧  ¬  𝑏  ∈  𝐵 ) ) | 
						
							| 67 | 65 66 | sylnibr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ¬  𝑏  ∈  ( 𝑇  ∖  𝐵 ) ) | 
						
							| 68 | 4 | eleq2i | ⊢ ( 𝑏  ∈  𝑈  ↔  𝑏  ∈  ( 𝑇  ∖  𝐵 ) ) | 
						
							| 69 | 67 68 | sylnibr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ¬  𝑏  ∈  𝑈 ) | 
						
							| 70 | 62 69 | eldifd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 71 | 70 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  𝐵 𝑏  ∈  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 72 |  | dfss3 | ⊢ ( 𝐵  ⊆  ( 𝑇  ∖  𝑈 )  ↔  ∀ 𝑏  ∈  𝐵 𝑏  ∈  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 73 | 71 72 | sylibr | ⊢ ( 𝜑  →  𝐵  ⊆  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 74 | 73 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝐵  ⊆  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 75 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑊  ∈  V ) | 
						
							| 76 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝐴  ∈  V ) | 
						
							| 77 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑟  ∈  Fin ) | 
						
							| 78 |  | mptfi | ⊢ ( 𝑟  ∈  Fin  →  ( 𝑤  ∈  𝑟  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  ∈  Fin ) | 
						
							| 79 |  | rnfi | ⊢ ( ( 𝑤  ∈  𝑟  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  ∈  Fin  →  ran  ( 𝑤  ∈  𝑟  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  ∈  Fin ) | 
						
							| 80 | 77 78 79 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  ran  ( 𝑤  ∈  𝑟  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  ∈  Fin ) | 
						
							| 81 | 49 53 57 5 6 58 38 59 60 61 74 75 76 80 | stoweidlem31 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 82 | 39 45 81 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 83 | 82 | ex | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  →  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 84 | 83 | eximdv | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  →  ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 85 | 84 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ℕ ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  →  ∃ 𝑚  ∈  ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 86 | 32 85 | mpd | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |