| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem39.1 |
⊢ Ⅎ ℎ 𝜑 |
| 2 |
|
stoweidlem39.2 |
⊢ Ⅎ 𝑡 𝜑 |
| 3 |
|
stoweidlem39.3 |
⊢ Ⅎ 𝑤 𝜑 |
| 4 |
|
stoweidlem39.4 |
⊢ 𝑈 = ( 𝑇 ∖ 𝐵 ) |
| 5 |
|
stoweidlem39.5 |
⊢ 𝑌 = { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
| 6 |
|
stoweidlem39.6 |
⊢ 𝑊 = { 𝑤 ∈ 𝐽 ∣ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) } |
| 7 |
|
stoweidlem39.7 |
⊢ ( 𝜑 → 𝑟 ∈ ( 𝒫 𝑊 ∩ Fin ) ) |
| 8 |
|
stoweidlem39.8 |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑟 ) |
| 9 |
|
stoweidlem39.9 |
⊢ ( 𝜑 → 𝐷 ≠ ∅ ) |
| 10 |
|
stoweidlem39.10 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 11 |
|
stoweidlem39.11 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑇 ) |
| 12 |
|
stoweidlem39.12 |
⊢ ( 𝜑 → 𝑊 ∈ V ) |
| 13 |
|
stoweidlem39.13 |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 14 |
8 9
|
jca |
⊢ ( 𝜑 → ( 𝐷 ⊆ ∪ 𝑟 ∧ 𝐷 ≠ ∅ ) ) |
| 15 |
|
ssn0 |
⊢ ( ( 𝐷 ⊆ ∪ 𝑟 ∧ 𝐷 ≠ ∅ ) → ∪ 𝑟 ≠ ∅ ) |
| 16 |
|
unieq |
⊢ ( 𝑟 = ∅ → ∪ 𝑟 = ∪ ∅ ) |
| 17 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 18 |
16 17
|
eqtrdi |
⊢ ( 𝑟 = ∅ → ∪ 𝑟 = ∅ ) |
| 19 |
18
|
necon3i |
⊢ ( ∪ 𝑟 ≠ ∅ → 𝑟 ≠ ∅ ) |
| 20 |
14 15 19
|
3syl |
⊢ ( 𝜑 → 𝑟 ≠ ∅ ) |
| 21 |
20
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑟 = ∅ ) |
| 22 |
|
elinel2 |
⊢ ( 𝑟 ∈ ( 𝒫 𝑊 ∩ Fin ) → 𝑟 ∈ Fin ) |
| 23 |
7 22
|
syl |
⊢ ( 𝜑 → 𝑟 ∈ Fin ) |
| 24 |
|
fz1f1o |
⊢ ( 𝑟 ∈ Fin → ( 𝑟 = ∅ ∨ ( ( ♯ ‘ 𝑟 ) ∈ ℕ ∧ ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) ) |
| 25 |
|
pm2.53 |
⊢ ( ( 𝑟 = ∅ ∨ ( ( ♯ ‘ 𝑟 ) ∈ ℕ ∧ ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) → ( ¬ 𝑟 = ∅ → ( ( ♯ ‘ 𝑟 ) ∈ ℕ ∧ ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) ) |
| 26 |
23 24 25
|
3syl |
⊢ ( 𝜑 → ( ¬ 𝑟 = ∅ → ( ( ♯ ‘ 𝑟 ) ∈ ℕ ∧ ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) ) |
| 27 |
21 26
|
mpd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑟 ) ∈ ℕ ∧ ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑚 = ( ♯ ‘ 𝑟 ) → ( 1 ... 𝑚 ) = ( 1 ... ( ♯ ‘ 𝑟 ) ) ) |
| 29 |
28
|
f1oeq2d |
⊢ ( 𝑚 = ( ♯ ‘ 𝑟 ) → ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ↔ 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) |
| 30 |
29
|
exbidv |
⊢ ( 𝑚 = ( ♯ ‘ 𝑟 ) → ( ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ↔ ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) |
| 31 |
30
|
rspcev |
⊢ ( ( ( ♯ ‘ 𝑟 ) ∈ ℕ ∧ ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) → ∃ 𝑚 ∈ ℕ ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) |
| 32 |
27 31
|
syl |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) |
| 33 |
|
f1of |
⊢ ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 → 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑟 ) |
| 34 |
33
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑟 ) |
| 35 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝜑 ) |
| 36 |
|
elinel1 |
⊢ ( 𝑟 ∈ ( 𝒫 𝑊 ∩ Fin ) → 𝑟 ∈ 𝒫 𝑊 ) |
| 37 |
36
|
elpwid |
⊢ ( 𝑟 ∈ ( 𝒫 𝑊 ∩ Fin ) → 𝑟 ⊆ 𝑊 ) |
| 38 |
35 7 37
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝑟 ⊆ 𝑊 ) |
| 39 |
34 38
|
fssd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊 ) |
| 40 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝐷 ⊆ ∪ 𝑟 ) |
| 41 |
|
dff1o2 |
⊢ ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ↔ ( 𝑣 Fn ( 1 ... 𝑚 ) ∧ Fun ◡ 𝑣 ∧ ran 𝑣 = 𝑟 ) ) |
| 42 |
41
|
simp3bi |
⊢ ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 → ran 𝑣 = 𝑟 ) |
| 43 |
42
|
unieqd |
⊢ ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 → ∪ ran 𝑣 = ∪ 𝑟 ) |
| 44 |
43
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → ∪ ran 𝑣 = ∪ 𝑟 ) |
| 45 |
40 44
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝐷 ⊆ ∪ ran 𝑣 ) |
| 46 |
|
nfv |
⊢ Ⅎ ℎ 𝑚 ∈ ℕ |
| 47 |
1 46
|
nfan |
⊢ Ⅎ ℎ ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
| 48 |
|
nfv |
⊢ Ⅎ ℎ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 |
| 49 |
47 48
|
nfan |
⊢ Ⅎ ℎ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) |
| 50 |
|
nfv |
⊢ Ⅎ 𝑡 𝑚 ∈ ℕ |
| 51 |
2 50
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
| 52 |
|
nfv |
⊢ Ⅎ 𝑡 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 |
| 53 |
51 52
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) |
| 54 |
|
nfv |
⊢ Ⅎ 𝑤 𝑚 ∈ ℕ |
| 55 |
3 54
|
nfan |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
| 56 |
|
nfv |
⊢ Ⅎ 𝑤 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 |
| 57 |
55 56
|
nfan |
⊢ Ⅎ 𝑤 ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) |
| 58 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑟 ↦ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑚 ) ) < ( ℎ ‘ 𝑡 ) ) } ) = ( 𝑤 ∈ 𝑟 ↦ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑚 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 59 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝑚 ∈ ℕ ) |
| 60 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) |
| 61 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝐸 ∈ ℝ+ ) |
| 62 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝑇 ) |
| 63 |
|
notnot |
⊢ ( 𝑏 ∈ 𝐵 → ¬ ¬ 𝑏 ∈ 𝐵 ) |
| 64 |
63
|
intnand |
⊢ ( 𝑏 ∈ 𝐵 → ¬ ( 𝑏 ∈ 𝑇 ∧ ¬ 𝑏 ∈ 𝐵 ) ) |
| 65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ¬ ( 𝑏 ∈ 𝑇 ∧ ¬ 𝑏 ∈ 𝐵 ) ) |
| 66 |
|
eldif |
⊢ ( 𝑏 ∈ ( 𝑇 ∖ 𝐵 ) ↔ ( 𝑏 ∈ 𝑇 ∧ ¬ 𝑏 ∈ 𝐵 ) ) |
| 67 |
65 66
|
sylnibr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ¬ 𝑏 ∈ ( 𝑇 ∖ 𝐵 ) ) |
| 68 |
4
|
eleq2i |
⊢ ( 𝑏 ∈ 𝑈 ↔ 𝑏 ∈ ( 𝑇 ∖ 𝐵 ) ) |
| 69 |
67 68
|
sylnibr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ¬ 𝑏 ∈ 𝑈 ) |
| 70 |
62 69
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ( 𝑇 ∖ 𝑈 ) ) |
| 71 |
70
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐵 𝑏 ∈ ( 𝑇 ∖ 𝑈 ) ) |
| 72 |
|
dfss3 |
⊢ ( 𝐵 ⊆ ( 𝑇 ∖ 𝑈 ) ↔ ∀ 𝑏 ∈ 𝐵 𝑏 ∈ ( 𝑇 ∖ 𝑈 ) ) |
| 73 |
71 72
|
sylibr |
⊢ ( 𝜑 → 𝐵 ⊆ ( 𝑇 ∖ 𝑈 ) ) |
| 74 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝐵 ⊆ ( 𝑇 ∖ 𝑈 ) ) |
| 75 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝑊 ∈ V ) |
| 76 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝐴 ∈ V ) |
| 77 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → 𝑟 ∈ Fin ) |
| 78 |
|
mptfi |
⊢ ( 𝑟 ∈ Fin → ( 𝑤 ∈ 𝑟 ↦ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑚 ) ) < ( ℎ ‘ 𝑡 ) ) } ) ∈ Fin ) |
| 79 |
|
rnfi |
⊢ ( ( 𝑤 ∈ 𝑟 ↦ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑚 ) ) < ( ℎ ‘ 𝑡 ) ) } ) ∈ Fin → ran ( 𝑤 ∈ 𝑟 ↦ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑚 ) ) < ( ℎ ‘ 𝑡 ) ) } ) ∈ Fin ) |
| 80 |
77 78 79
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → ran ( 𝑤 ∈ 𝑟 ↦ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑚 ) ) < ( ℎ ‘ 𝑡 ) ) } ) ∈ Fin ) |
| 81 |
49 53 57 5 6 58 38 59 60 61 74 75 76 80
|
stoweidlem31 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 82 |
39 45 81
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 ) → ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 83 |
82
|
ex |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 → ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) ) |
| 84 |
83
|
eximdv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 → ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) ) |
| 85 |
84
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 → ∃ 𝑚 ∈ ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) ) |
| 86 |
32 85
|
mpd |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |