| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem40.1 | ⊢ Ⅎ 𝑡 𝑃 | 
						
							| 2 |  | stoweidlem40.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem40.3 | ⊢ 𝑄  =  ( 𝑡  ∈  𝑇  ↦  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ 𝑀 ) ) | 
						
							| 4 |  | stoweidlem40.4 | ⊢ 𝐹  =  ( 𝑡  ∈  𝑇  ↦  ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) | 
						
							| 5 |  | stoweidlem40.5 | ⊢ 𝐺  =  ( 𝑡  ∈  𝑇  ↦  1 ) | 
						
							| 6 |  | stoweidlem40.6 | ⊢ 𝐻  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) | 
						
							| 7 |  | stoweidlem40.7 | ⊢ ( 𝜑  →  𝑃  ∈  𝐴 ) | 
						
							| 8 |  | stoweidlem40.8 | ⊢ ( 𝜑  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 9 |  | stoweidlem40.9 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 10 |  | stoweidlem40.10 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 11 |  | stoweidlem40.11 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 12 |  | stoweidlem40.12 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 13 |  | stoweidlem40.13 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 14 |  | stoweidlem40.14 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 16 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  1  ∈  ℝ ) | 
						
							| 17 | 8 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑃 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 18 | 13 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 20 | 17 19 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 21 | 16 20 | resubcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) )  ∈  ℝ ) | 
						
							| 22 | 4 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) )  ∈  ℝ )  →  ( 𝐹 ‘ 𝑡 )  =  ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) | 
						
							| 23 | 15 21 22 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  =  ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) | 
						
							| 24 | 23 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ 𝑀 )  =  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑀 ) ) | 
						
							| 26 | 2 25 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ 𝑀 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑀 ) ) ) | 
						
							| 27 | 3 26 | eqtrid | ⊢ ( 𝜑  →  𝑄  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑀 ) ) ) | 
						
							| 28 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) | 
						
							| 29 | 4 28 | nfcxfr | ⊢ Ⅎ 𝑡 𝐹 | 
						
							| 30 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 31 | 5 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  1  ∈  ℝ )  →  ( 𝐺 ‘ 𝑡 )  =  1 ) | 
						
							| 32 | 30 31 | mpan2 | ⊢ ( 𝑡  ∈  𝑇  →  ( 𝐺 ‘ 𝑡 )  =  1 ) | 
						
							| 33 | 32 | eqcomd | ⊢ ( 𝑡  ∈  𝑇  →  1  =  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  1  =  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 35 | 6 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 )  ∈  ℝ )  →  ( 𝐻 ‘ 𝑡 )  =  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) | 
						
							| 36 | 15 20 35 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 )  =  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) | 
						
							| 37 | 36 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 )  =  ( 𝐻 ‘ 𝑡 ) ) | 
						
							| 38 | 34 37 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) )  =  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) ) | 
						
							| 39 | 2 38 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) ) ) | 
						
							| 40 | 4 39 | eqtrid | ⊢ ( 𝜑  →  𝐹  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) ) ) | 
						
							| 41 | 12 | stoweidlem4 | ⊢ ( ( 𝜑  ∧  1  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  1 )  ∈  𝐴 ) | 
						
							| 42 | 30 41 | mpan2 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  1 )  ∈  𝐴 ) | 
						
							| 43 | 5 42 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  𝐴 ) | 
						
							| 44 | 1 2 9 11 12 7 18 | stoweidlem19 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) )  ∈  𝐴 ) | 
						
							| 45 | 6 44 | eqeltrid | ⊢ ( 𝜑  →  𝐻  ∈  𝐴 ) | 
						
							| 46 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  1 ) | 
						
							| 47 | 5 46 | nfcxfr | ⊢ Ⅎ 𝑡 𝐺 | 
						
							| 48 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) | 
						
							| 49 | 6 48 | nfcxfr | ⊢ Ⅎ 𝑡 𝐻 | 
						
							| 50 | 47 49 2 9 10 11 12 | stoweidlem33 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  𝐴  ∧  𝐻  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 51 | 43 45 50 | mpd3an23 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐻 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 52 | 40 51 | eqeltrd | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 53 | 14 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 54 | 29 2 9 11 12 52 53 | stoweidlem19 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑀 ) )  ∈  𝐴 ) | 
						
							| 55 | 27 54 | eqeltrd | ⊢ ( 𝜑  →  𝑄  ∈  𝐴 ) |