Metamath Proof Explorer


Theorem stoweidlem40

Description: This lemma proves that q_n is in the subalgebra, as in the proof of Lemma 1 in BrosowskiDeutsh p. 90. Q is used to represent q_n in the paper, N is used to represent n in the paper, and M is used to represent k^n in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem40.1
|- F/_ t P
stoweidlem40.2
|- F/ t ph
stoweidlem40.3
|- Q = ( t e. T |-> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ M ) )
stoweidlem40.4
|- F = ( t e. T |-> ( 1 - ( ( P ` t ) ^ N ) ) )
stoweidlem40.5
|- G = ( t e. T |-> 1 )
stoweidlem40.6
|- H = ( t e. T |-> ( ( P ` t ) ^ N ) )
stoweidlem40.7
|- ( ph -> P e. A )
stoweidlem40.8
|- ( ph -> P : T --> RR )
stoweidlem40.9
|- ( ( ph /\ f e. A ) -> f : T --> RR )
stoweidlem40.10
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A )
stoweidlem40.11
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A )
stoweidlem40.12
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A )
stoweidlem40.13
|- ( ph -> N e. NN )
stoweidlem40.14
|- ( ph -> M e. NN )
Assertion stoweidlem40
|- ( ph -> Q e. A )

Proof

Step Hyp Ref Expression
1 stoweidlem40.1
 |-  F/_ t P
2 stoweidlem40.2
 |-  F/ t ph
3 stoweidlem40.3
 |-  Q = ( t e. T |-> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ M ) )
4 stoweidlem40.4
 |-  F = ( t e. T |-> ( 1 - ( ( P ` t ) ^ N ) ) )
5 stoweidlem40.5
 |-  G = ( t e. T |-> 1 )
6 stoweidlem40.6
 |-  H = ( t e. T |-> ( ( P ` t ) ^ N ) )
7 stoweidlem40.7
 |-  ( ph -> P e. A )
8 stoweidlem40.8
 |-  ( ph -> P : T --> RR )
9 stoweidlem40.9
 |-  ( ( ph /\ f e. A ) -> f : T --> RR )
10 stoweidlem40.10
 |-  ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A )
11 stoweidlem40.11
 |-  ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A )
12 stoweidlem40.12
 |-  ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A )
13 stoweidlem40.13
 |-  ( ph -> N e. NN )
14 stoweidlem40.14
 |-  ( ph -> M e. NN )
15 simpr
 |-  ( ( ph /\ t e. T ) -> t e. T )
16 1red
 |-  ( ( ph /\ t e. T ) -> 1 e. RR )
17 8 ffvelrnda
 |-  ( ( ph /\ t e. T ) -> ( P ` t ) e. RR )
18 13 nnnn0d
 |-  ( ph -> N e. NN0 )
19 18 adantr
 |-  ( ( ph /\ t e. T ) -> N e. NN0 )
20 17 19 reexpcld
 |-  ( ( ph /\ t e. T ) -> ( ( P ` t ) ^ N ) e. RR )
21 16 20 resubcld
 |-  ( ( ph /\ t e. T ) -> ( 1 - ( ( P ` t ) ^ N ) ) e. RR )
22 4 fvmpt2
 |-  ( ( t e. T /\ ( 1 - ( ( P ` t ) ^ N ) ) e. RR ) -> ( F ` t ) = ( 1 - ( ( P ` t ) ^ N ) ) )
23 15 21 22 syl2anc
 |-  ( ( ph /\ t e. T ) -> ( F ` t ) = ( 1 - ( ( P ` t ) ^ N ) ) )
24 23 eqcomd
 |-  ( ( ph /\ t e. T ) -> ( 1 - ( ( P ` t ) ^ N ) ) = ( F ` t ) )
25 24 oveq1d
 |-  ( ( ph /\ t e. T ) -> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ M ) = ( ( F ` t ) ^ M ) )
26 2 25 mpteq2da
 |-  ( ph -> ( t e. T |-> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ M ) ) = ( t e. T |-> ( ( F ` t ) ^ M ) ) )
27 3 26 syl5eq
 |-  ( ph -> Q = ( t e. T |-> ( ( F ` t ) ^ M ) ) )
28 nfmpt1
 |-  F/_ t ( t e. T |-> ( 1 - ( ( P ` t ) ^ N ) ) )
29 4 28 nfcxfr
 |-  F/_ t F
30 1re
 |-  1 e. RR
31 5 fvmpt2
 |-  ( ( t e. T /\ 1 e. RR ) -> ( G ` t ) = 1 )
32 30 31 mpan2
 |-  ( t e. T -> ( G ` t ) = 1 )
33 32 eqcomd
 |-  ( t e. T -> 1 = ( G ` t ) )
34 33 adantl
 |-  ( ( ph /\ t e. T ) -> 1 = ( G ` t ) )
35 6 fvmpt2
 |-  ( ( t e. T /\ ( ( P ` t ) ^ N ) e. RR ) -> ( H ` t ) = ( ( P ` t ) ^ N ) )
36 15 20 35 syl2anc
 |-  ( ( ph /\ t e. T ) -> ( H ` t ) = ( ( P ` t ) ^ N ) )
37 36 eqcomd
 |-  ( ( ph /\ t e. T ) -> ( ( P ` t ) ^ N ) = ( H ` t ) )
38 34 37 oveq12d
 |-  ( ( ph /\ t e. T ) -> ( 1 - ( ( P ` t ) ^ N ) ) = ( ( G ` t ) - ( H ` t ) ) )
39 2 38 mpteq2da
 |-  ( ph -> ( t e. T |-> ( 1 - ( ( P ` t ) ^ N ) ) ) = ( t e. T |-> ( ( G ` t ) - ( H ` t ) ) ) )
40 4 39 syl5eq
 |-  ( ph -> F = ( t e. T |-> ( ( G ` t ) - ( H ` t ) ) ) )
41 12 stoweidlem4
 |-  ( ( ph /\ 1 e. RR ) -> ( t e. T |-> 1 ) e. A )
42 30 41 mpan2
 |-  ( ph -> ( t e. T |-> 1 ) e. A )
43 5 42 eqeltrid
 |-  ( ph -> G e. A )
44 1 2 9 11 12 7 18 stoweidlem19
 |-  ( ph -> ( t e. T |-> ( ( P ` t ) ^ N ) ) e. A )
45 6 44 eqeltrid
 |-  ( ph -> H e. A )
46 nfmpt1
 |-  F/_ t ( t e. T |-> 1 )
47 5 46 nfcxfr
 |-  F/_ t G
48 nfmpt1
 |-  F/_ t ( t e. T |-> ( ( P ` t ) ^ N ) )
49 6 48 nfcxfr
 |-  F/_ t H
50 47 49 2 9 10 11 12 stoweidlem33
 |-  ( ( ph /\ G e. A /\ H e. A ) -> ( t e. T |-> ( ( G ` t ) - ( H ` t ) ) ) e. A )
51 43 45 50 mpd3an23
 |-  ( ph -> ( t e. T |-> ( ( G ` t ) - ( H ` t ) ) ) e. A )
52 40 51 eqeltrd
 |-  ( ph -> F e. A )
53 14 nnnn0d
 |-  ( ph -> M e. NN0 )
54 29 2 9 11 12 52 53 stoweidlem19
 |-  ( ph -> ( t e. T |-> ( ( F ` t ) ^ M ) ) e. A )
55 27 54 eqeltrd
 |-  ( ph -> Q e. A )