| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem31.1 | ⊢ Ⅎ ℎ 𝜑 | 
						
							| 2 |  | stoweidlem31.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem31.3 | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 4 |  | stoweidlem31.4 | ⊢ 𝑌  =  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } | 
						
							| 5 |  | stoweidlem31.5 | ⊢ 𝑉  =  { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) } | 
						
							| 6 |  | stoweidlem31.6 | ⊢ 𝐺  =  ( 𝑤  ∈  𝑅  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 7 |  | stoweidlem31.7 | ⊢ ( 𝜑  →  𝑅  ⊆  𝑉 ) | 
						
							| 8 |  | stoweidlem31.8 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 9 |  | stoweidlem31.9 | ⊢ ( 𝜑  →  𝑣 : ( 1 ... 𝑀 ) –1-1-onto→ 𝑅 ) | 
						
							| 10 |  | stoweidlem31.10 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 11 |  | stoweidlem31.11 | ⊢ ( 𝜑  →  𝐵  ⊆  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 12 |  | stoweidlem31.12 | ⊢ ( 𝜑  →  𝑉  ∈  V ) | 
						
							| 13 |  | stoweidlem31.13 | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 14 |  | stoweidlem31.14 | ⊢ ( 𝜑  →  ran  𝐺  ∈  Fin ) | 
						
							| 15 |  | fnchoice | ⊢ ( ran  𝐺  ∈  Fin  →  ∃ 𝑙 ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  ∃ 𝑙 ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) ) | 
						
							| 17 |  | vex | ⊢ 𝑙  ∈  V | 
						
							| 18 | 12 7 | ssexd | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 19 |  | mptexg | ⊢ ( 𝑅  ∈  V  →  ( 𝑤  ∈  𝑅  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  ∈  V ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝑅  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  ∈  V ) | 
						
							| 21 | 6 20 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  V ) | 
						
							| 22 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 23 |  | coexg | ⊢ ( ( 𝐺  ∈  V  ∧  𝑣  ∈  V )  →  ( 𝐺  ∘  𝑣 )  ∈  V ) | 
						
							| 24 | 21 22 23 | sylancl | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝑣 )  ∈  V ) | 
						
							| 25 |  | coexg | ⊢ ( ( 𝑙  ∈  V  ∧  ( 𝐺  ∘  𝑣 )  ∈  V )  →  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  ∈  V ) | 
						
							| 26 | 17 24 25 | sylancr | ⊢ ( 𝜑  →  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  ∈  V ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  ∈  V ) | 
						
							| 28 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  𝑙  Fn  ran  𝐺 ) | 
						
							| 29 |  | nfcv | ⊢ Ⅎ ℎ 𝑙 | 
						
							| 30 |  | nfcv | ⊢ Ⅎ ℎ 𝑅 | 
						
							| 31 |  | nfrab1 | ⊢ Ⅎ ℎ { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } | 
						
							| 32 | 30 31 | nfmpt | ⊢ Ⅎ ℎ ( 𝑤  ∈  𝑅  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 33 | 6 32 | nfcxfr | ⊢ Ⅎ ℎ 𝐺 | 
						
							| 34 | 33 | nfrn | ⊢ Ⅎ ℎ ran  𝐺 | 
						
							| 35 | 29 34 | nffn | ⊢ Ⅎ ℎ 𝑙  Fn  ran  𝐺 | 
						
							| 36 |  | nfv | ⊢ Ⅎ ℎ ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) | 
						
							| 37 | 34 36 | nfralw | ⊢ Ⅎ ℎ ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) | 
						
							| 38 | 35 37 | nfan | ⊢ Ⅎ ℎ ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) | 
						
							| 39 | 1 38 | nfan | ⊢ Ⅎ ℎ ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) ) | 
						
							| 40 |  | fvelrnb | ⊢ ( 𝑙  Fn  ran  𝐺  →  ( ℎ  ∈  ran  𝑙  ↔  ∃ 𝑏  ∈  ran  𝐺 ( 𝑙 ‘ 𝑏 )  =  ℎ ) ) | 
						
							| 41 | 28 40 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  ( ℎ  ∈  ran  𝑙  ↔  ∃ 𝑏  ∈  ran  𝐺 ( 𝑙 ‘ 𝑏 )  =  ℎ ) ) | 
						
							| 42 | 41 | biimpa | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  →  ∃ 𝑏  ∈  ran  𝐺 ( 𝑙 ‘ 𝑏 )  =  ℎ ) | 
						
							| 43 |  | nfv | ⊢ Ⅎ 𝑏 𝜑 | 
						
							| 44 |  | nfv | ⊢ Ⅎ 𝑏 𝑙  Fn  ran  𝐺 | 
						
							| 45 |  | nfra1 | ⊢ Ⅎ 𝑏 ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) | 
						
							| 46 | 44 45 | nfan | ⊢ Ⅎ 𝑏 ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) | 
						
							| 47 | 43 46 | nfan | ⊢ Ⅎ 𝑏 ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) ) | 
						
							| 48 |  | nfv | ⊢ Ⅎ 𝑏 ℎ  ∈  ran  𝑙 | 
						
							| 49 | 47 48 | nfan | ⊢ Ⅎ 𝑏 ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 ) | 
						
							| 50 |  | simp3 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  ∧  𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  =  ℎ )  →  ( 𝑙 ‘ 𝑏 )  =  ℎ ) | 
						
							| 51 |  | simp1ll | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  ∧  𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  =  ℎ )  →  𝜑 ) | 
						
							| 52 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  →  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) | 
						
							| 53 | 52 | 3ad2ant1 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  ∧  𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  =  ℎ )  →  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) | 
						
							| 54 |  | simp2 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  ∧  𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  =  ℎ )  →  𝑏  ∈  ran  𝐺 ) | 
						
							| 55 |  | simp3 | ⊢ ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑏  ∈  ran  𝐺 )  →  𝑏  ∈  ran  𝐺 ) | 
						
							| 56 |  | 3simpc | ⊢ ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑏  ∈  ran  𝐺 )  →  ( ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑏  ∈  ran  𝐺 ) ) | 
						
							| 57 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ran  𝐺 )  →  𝑏  ∈  ran  𝐺 ) | 
						
							| 58 |  | rabexg | ⊢ ( 𝐴  ∈  V  →  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ∈  V ) | 
						
							| 59 | 13 58 | syl | ⊢ ( 𝜑  →  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ∈  V ) | 
						
							| 60 | 59 | a1d | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝑅  →  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ∈  V ) ) | 
						
							| 61 | 3 60 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝑅 { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ∈  V ) | 
						
							| 62 | 6 | fnmpt | ⊢ ( ∀ 𝑤  ∈  𝑅 { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ∈  V  →  𝐺  Fn  𝑅 ) | 
						
							| 63 | 61 62 | syl | ⊢ ( 𝜑  →  𝐺  Fn  𝑅 ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ran  𝐺 )  →  𝐺  Fn  𝑅 ) | 
						
							| 65 |  | fvelrnb | ⊢ ( 𝐺  Fn  𝑅  →  ( 𝑏  ∈  ran  𝐺  ↔  ∃ 𝑢  ∈  𝑅 ( 𝐺 ‘ 𝑢 )  =  𝑏 ) ) | 
						
							| 66 |  | nfmpt1 | ⊢ Ⅎ 𝑤 ( 𝑤  ∈  𝑅  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 67 | 6 66 | nfcxfr | ⊢ Ⅎ 𝑤 𝐺 | 
						
							| 68 |  | nfcv | ⊢ Ⅎ 𝑤 𝑢 | 
						
							| 69 | 67 68 | nffv | ⊢ Ⅎ 𝑤 ( 𝐺 ‘ 𝑢 ) | 
						
							| 70 |  | nfcv | ⊢ Ⅎ 𝑤 𝑏 | 
						
							| 71 | 69 70 | nfeq | ⊢ Ⅎ 𝑤 ( 𝐺 ‘ 𝑢 )  =  𝑏 | 
						
							| 72 |  | nfv | ⊢ Ⅎ 𝑢 ( 𝐺 ‘ 𝑤 )  =  𝑏 | 
						
							| 73 |  | fveq2 | ⊢ ( 𝑢  =  𝑤  →  ( 𝐺 ‘ 𝑢 )  =  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 74 | 73 | eqeq1d | ⊢ ( 𝑢  =  𝑤  →  ( ( 𝐺 ‘ 𝑢 )  =  𝑏  ↔  ( 𝐺 ‘ 𝑤 )  =  𝑏 ) ) | 
						
							| 75 | 71 72 74 | cbvrexw | ⊢ ( ∃ 𝑢  ∈  𝑅 ( 𝐺 ‘ 𝑢 )  =  𝑏  ↔  ∃ 𝑤  ∈  𝑅 ( 𝐺 ‘ 𝑤 )  =  𝑏 ) | 
						
							| 76 | 65 75 | bitrdi | ⊢ ( 𝐺  Fn  𝑅  →  ( 𝑏  ∈  ran  𝐺  ↔  ∃ 𝑤  ∈  𝑅 ( 𝐺 ‘ 𝑤 )  =  𝑏 ) ) | 
						
							| 77 | 64 76 | syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ran  𝐺 )  →  ( 𝑏  ∈  ran  𝐺  ↔  ∃ 𝑤  ∈  𝑅 ( 𝐺 ‘ 𝑤 )  =  𝑏 ) ) | 
						
							| 78 | 57 77 | mpbid | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ran  𝐺 )  →  ∃ 𝑤  ∈  𝑅 ( 𝐺 ‘ 𝑤 )  =  𝑏 ) | 
						
							| 79 | 67 | nfrn | ⊢ Ⅎ 𝑤 ran  𝐺 | 
						
							| 80 | 79 | nfcri | ⊢ Ⅎ 𝑤 𝑏  ∈  ran  𝐺 | 
						
							| 81 | 3 80 | nfan | ⊢ Ⅎ 𝑤 ( 𝜑  ∧  𝑏  ∈  ran  𝐺 ) | 
						
							| 82 |  | nfv | ⊢ Ⅎ 𝑤 𝑏  ≠  ∅ | 
						
							| 83 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅  ∧  ( 𝐺 ‘ 𝑤 )  =  𝑏 )  →  ( 𝐺 ‘ 𝑤 )  =  𝑏 ) | 
						
							| 84 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  𝑤  ∈  𝑅 ) | 
						
							| 85 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  𝐴  ∈  V ) | 
						
							| 86 | 85 58 | syl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ∈  V ) | 
						
							| 87 | 6 | fvmpt2 | ⊢ ( ( 𝑤  ∈  𝑅  ∧  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ∈  V )  →  ( 𝐺 ‘ 𝑤 )  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 88 | 84 86 87 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  ( 𝐺 ‘ 𝑤 )  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 89 | 7 | sselda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  𝑤  ∈  𝑉 ) | 
						
							| 90 | 5 | reqabi | ⊢ ( 𝑤  ∈  𝑉  ↔  ( 𝑤  ∈  𝐽  ∧  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) ) | 
						
							| 91 | 89 90 | sylib | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  ( 𝑤  ∈  𝐽  ∧  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) ) | 
						
							| 92 | 91 | simprd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 93 | 8 | nnrpd | ⊢ ( 𝜑  →  𝑀  ∈  ℝ+ ) | 
						
							| 94 | 10 93 | rpdivcld | ⊢ ( 𝜑  →  ( 𝐸  /  𝑀 )  ∈  ℝ+ ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  ( 𝐸  /  𝑀 )  ∈  ℝ+ ) | 
						
							| 96 |  | breq2 | ⊢ ( 𝑒  =  ( 𝐸  /  𝑀 )  →  ( ( ℎ ‘ 𝑡 )  <  𝑒  ↔  ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 97 | 96 | ralbidv | ⊢ ( 𝑒  =  ( 𝐸  /  𝑀 )  →  ( ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ↔  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 98 |  | oveq2 | ⊢ ( 𝑒  =  ( 𝐸  /  𝑀 )  →  ( 1  −  𝑒 )  =  ( 1  −  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 99 | 98 | breq1d | ⊢ ( 𝑒  =  ( 𝐸  /  𝑀 )  →  ( ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 )  ↔  ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 100 | 99 | ralbidv | ⊢ ( 𝑒  =  ( 𝐸  /  𝑀 )  →  ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 101 | 97 100 | 3anbi23d | ⊢ ( 𝑒  =  ( 𝐸  /  𝑀 )  →  ( ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) )  ↔  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) ) ) | 
						
							| 102 | 101 | rexbidv | ⊢ ( 𝑒  =  ( 𝐸  /  𝑀 )  →  ( ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) )  ↔  ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) ) ) | 
						
							| 103 | 102 | rspccva | ⊢ ( ( ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) )  ∧  ( 𝐸  /  𝑀 )  ∈  ℝ+ )  →  ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 104 | 92 95 103 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 105 |  | nfv | ⊢ Ⅎ ℎ 𝑤  ∈  𝑅 | 
						
							| 106 | 1 105 | nfan | ⊢ Ⅎ ℎ ( 𝜑  ∧  𝑤  ∈  𝑅 ) | 
						
							| 107 |  | nfcv | ⊢ Ⅎ ℎ ∅ | 
						
							| 108 | 31 107 | nfne | ⊢ Ⅎ ℎ { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ≠  ∅ | 
						
							| 109 |  | 3simpc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  ∧  ℎ  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) )  →  ( ℎ  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) ) ) | 
						
							| 110 |  | rabid | ⊢ ( ℎ  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ↔  ( ℎ  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) ) ) | 
						
							| 111 | 109 110 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  ∧  ℎ  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) )  →  ℎ  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 112 |  | ne0i | ⊢ ( ℎ  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  →  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ≠  ∅ ) | 
						
							| 113 | 111 112 | syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  ∧  ℎ  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) )  →  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ≠  ∅ ) | 
						
							| 114 | 113 | 3exp | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  ( ℎ  ∈  𝐴  →  ( ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) )  →  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ≠  ∅ ) ) ) | 
						
							| 115 | 106 108 114 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  ( ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) )  →  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ≠  ∅ ) ) | 
						
							| 116 | 104 115 | mpd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ≠  ∅ ) | 
						
							| 117 | 88 116 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅 )  →  ( 𝐺 ‘ 𝑤 )  ≠  ∅ ) | 
						
							| 118 | 117 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅  ∧  ( 𝐺 ‘ 𝑤 )  =  𝑏 )  →  ( 𝐺 ‘ 𝑤 )  ≠  ∅ ) | 
						
							| 119 | 83 118 | eqnetrrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑅  ∧  ( 𝐺 ‘ 𝑤 )  =  𝑏 )  →  𝑏  ≠  ∅ ) | 
						
							| 120 | 119 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  ran  𝐺 )  ∧  𝑤  ∈  𝑅  ∧  ( 𝐺 ‘ 𝑤 )  =  𝑏 )  →  𝑏  ≠  ∅ ) | 
						
							| 121 | 120 | 3exp | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ran  𝐺 )  →  ( 𝑤  ∈  𝑅  →  ( ( 𝐺 ‘ 𝑤 )  =  𝑏  →  𝑏  ≠  ∅ ) ) ) | 
						
							| 122 | 81 82 121 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ran  𝐺 )  →  ( ∃ 𝑤  ∈  𝑅 ( 𝐺 ‘ 𝑤 )  =  𝑏  →  𝑏  ≠  ∅ ) ) | 
						
							| 123 | 78 122 | mpd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ran  𝐺 )  →  𝑏  ≠  ∅ ) | 
						
							| 124 | 123 | 3adant2 | ⊢ ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑏  ∈  ran  𝐺 )  →  𝑏  ≠  ∅ ) | 
						
							| 125 |  | rspa | ⊢ ( ( ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑏  ∈  ran  𝐺 )  →  ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) | 
						
							| 126 | 56 124 125 | sylc | ⊢ ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑏  ∈  ran  𝐺 )  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) | 
						
							| 127 | 55 126 | jca | ⊢ ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑏  ∈  ran  𝐺 )  →  ( 𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) | 
						
							| 128 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 129 | 6 | elrnmpt | ⊢ ( 𝑏  ∈  V  →  ( 𝑏  ∈  ran  𝐺  ↔  ∃ 𝑤  ∈  𝑅 𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) ) | 
						
							| 130 | 128 129 | ax-mp | ⊢ ( 𝑏  ∈  ran  𝐺  ↔  ∃ 𝑤  ∈  𝑅 𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 131 | 55 130 | sylib | ⊢ ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑏  ∈  ran  𝐺 )  →  ∃ 𝑤  ∈  𝑅 𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 132 |  | nfv | ⊢ Ⅎ 𝑤 ( 𝑙 ‘ 𝑏 )  ∈  𝑏 | 
						
							| 133 | 80 132 | nfan | ⊢ Ⅎ 𝑤 ( 𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) | 
						
							| 134 |  | nfv | ⊢ Ⅎ 𝑤 ( 𝑙 ‘ 𝑏 )  ∈  𝑌 | 
						
							| 135 |  | simp1r | ⊢ ( ( ( 𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑤  ∈  𝑅  ∧  𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) | 
						
							| 136 |  | simp3 | ⊢ ( ( ( 𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑤  ∈  𝑅  ∧  𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  →  𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 137 |  | simpl | ⊢ ( ( ( 𝑙 ‘ 𝑏 )  ∈  𝑏  ∧  𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) | 
						
							| 138 |  | simpr | ⊢ ( ( ( 𝑙 ‘ 𝑏 )  ∈  𝑏  ∧  𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  →  𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 139 | 137 138 | eleqtrd | ⊢ ( ( ( 𝑙 ‘ 𝑏 )  ∈  𝑏  ∧  𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  →  ( 𝑙 ‘ 𝑏 )  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 140 |  | elrabi | ⊢ ( ( 𝑙 ‘ 𝑏 )  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  →  ( 𝑙 ‘ 𝑏 )  ∈  𝐴 ) | 
						
							| 141 |  | fveq1 | ⊢ ( ℎ  =  ( 𝑙 ‘ 𝑏 )  →  ( ℎ ‘ 𝑡 )  =  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) | 
						
							| 142 | 141 | breq2d | ⊢ ( ℎ  =  ( 𝑙 ‘ 𝑏 )  →  ( 0  ≤  ( ℎ ‘ 𝑡 )  ↔  0  ≤  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) ) | 
						
							| 143 | 141 | breq1d | ⊢ ( ℎ  =  ( 𝑙 ‘ 𝑏 )  →  ( ( ℎ ‘ 𝑡 )  ≤  1  ↔  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 144 | 142 143 | anbi12d | ⊢ ( ℎ  =  ( 𝑙 ‘ 𝑏 )  →  ( ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ∧  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 145 | 144 | ralbidv | ⊢ ( ℎ  =  ( 𝑙 ‘ 𝑏 )  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ∧  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 146 | 141 | breq1d | ⊢ ( ℎ  =  ( 𝑙 ‘ 𝑏 )  →  ( ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ↔  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 147 | 146 | ralbidv | ⊢ ( ℎ  =  ( 𝑙 ‘ 𝑏 )  →  ( ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ↔  ∀ 𝑡  ∈  𝑤 ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 148 | 141 | breq2d | ⊢ ( ℎ  =  ( 𝑙 ‘ 𝑏 )  →  ( ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 )  ↔  ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) ) | 
						
							| 149 | 148 | ralbidv | ⊢ ( ℎ  =  ( 𝑙 ‘ 𝑏 )  →  ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) ) | 
						
							| 150 | 145 147 149 | 3anbi123d | ⊢ ( ℎ  =  ( 𝑙 ‘ 𝑏 )  →  ( ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) )  ↔  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ∧  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) ) ) | 
						
							| 151 | 150 | elrab | ⊢ ( ( 𝑙 ‘ 𝑏 )  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ↔  ( ( 𝑙 ‘ 𝑏 )  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ∧  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) ) ) | 
						
							| 152 | 151 | simprbi | ⊢ ( ( 𝑙 ‘ 𝑏 )  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ∧  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) ) | 
						
							| 153 | 152 | simp1d | ⊢ ( ( 𝑙 ‘ 𝑏 )  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ∧  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 154 | 145 | elrab | ⊢ ( ( 𝑙 ‘ 𝑏 )  ∈  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  ↔  ( ( 𝑙 ‘ 𝑏 )  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ∧  ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 155 | 140 153 154 | sylanbrc | ⊢ ( ( 𝑙 ‘ 𝑏 )  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  →  ( 𝑙 ‘ 𝑏 )  ∈  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } ) | 
						
							| 156 | 139 155 | syl | ⊢ ( ( ( 𝑙 ‘ 𝑏 )  ∈  𝑏  ∧  𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  →  ( 𝑙 ‘ 𝑏 )  ∈  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } ) | 
						
							| 157 | 156 4 | eleqtrrdi | ⊢ ( ( ( 𝑙 ‘ 𝑏 )  ∈  𝑏  ∧  𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑌 ) | 
						
							| 158 | 135 136 157 | syl2anc | ⊢ ( ( ( 𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑤  ∈  𝑅  ∧  𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑌 ) | 
						
							| 159 | 158 | 3exp | ⊢ ( ( 𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  →  ( 𝑤  ∈  𝑅  →  ( 𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑌 ) ) ) | 
						
							| 160 | 133 134 159 | rexlimd | ⊢ ( ( 𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  →  ( ∃ 𝑤  ∈  𝑅 𝑏  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑌 ) ) | 
						
							| 161 | 127 131 160 | sylc | ⊢ ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑏  ∈  ran  𝐺 )  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑌 ) | 
						
							| 162 | 51 53 54 161 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  ∧  𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  =  ℎ )  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑌 ) | 
						
							| 163 | 50 162 | eqeltrrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  ∧  𝑏  ∈  ran  𝐺  ∧  ( 𝑙 ‘ 𝑏 )  =  ℎ )  →  ℎ  ∈  𝑌 ) | 
						
							| 164 | 163 | 3exp | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  →  ( 𝑏  ∈  ran  𝐺  →  ( ( 𝑙 ‘ 𝑏 )  =  ℎ  →  ℎ  ∈  𝑌 ) ) ) | 
						
							| 165 | 49 164 | reximdai | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  →  ( ∃ 𝑏  ∈  ran  𝐺 ( 𝑙 ‘ 𝑏 )  =  ℎ  →  ∃ 𝑏  ∈  ran  𝐺 ℎ  ∈  𝑌 ) ) | 
						
							| 166 | 42 165 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  →  ∃ 𝑏  ∈  ran  𝐺 ℎ  ∈  𝑌 ) | 
						
							| 167 |  | nfv | ⊢ Ⅎ 𝑏 ℎ  ∈  𝑌 | 
						
							| 168 |  | idd | ⊢ ( 𝑏  ∈  ran  𝐺  →  ( ℎ  ∈  𝑌  →  ℎ  ∈  𝑌 ) ) | 
						
							| 169 | 168 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  →  ( 𝑏  ∈  ran  𝐺  →  ( ℎ  ∈  𝑌  →  ℎ  ∈  𝑌 ) ) ) | 
						
							| 170 | 49 167 169 | rexlimd | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  →  ( ∃ 𝑏  ∈  ran  𝐺 ℎ  ∈  𝑌  →  ℎ  ∈  𝑌 ) ) | 
						
							| 171 | 166 170 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  ℎ  ∈  ran  𝑙 )  →  ℎ  ∈  𝑌 ) | 
						
							| 172 | 171 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  ( ℎ  ∈  ran  𝑙  →  ℎ  ∈  𝑌 ) ) | 
						
							| 173 | 39 172 | ralrimi | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  ∀ ℎ  ∈  ran  𝑙 ℎ  ∈  𝑌 ) | 
						
							| 174 |  | dfss3 | ⊢ ( ran  𝑙  ⊆  𝑌  ↔  ∀ 𝑧  ∈  ran  𝑙 𝑧  ∈  𝑌 ) | 
						
							| 175 |  | nfrab1 | ⊢ Ⅎ ℎ { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } | 
						
							| 176 | 4 175 | nfcxfr | ⊢ Ⅎ ℎ 𝑌 | 
						
							| 177 | 176 | nfcri | ⊢ Ⅎ ℎ 𝑧  ∈  𝑌 | 
						
							| 178 |  | nfv | ⊢ Ⅎ 𝑧 ℎ  ∈  𝑌 | 
						
							| 179 |  | eleq1 | ⊢ ( 𝑧  =  ℎ  →  ( 𝑧  ∈  𝑌  ↔  ℎ  ∈  𝑌 ) ) | 
						
							| 180 | 177 178 179 | cbvralw | ⊢ ( ∀ 𝑧  ∈  ran  𝑙 𝑧  ∈  𝑌  ↔  ∀ ℎ  ∈  ran  𝑙 ℎ  ∈  𝑌 ) | 
						
							| 181 | 174 180 | bitri | ⊢ ( ran  𝑙  ⊆  𝑌  ↔  ∀ ℎ  ∈  ran  𝑙 ℎ  ∈  𝑌 ) | 
						
							| 182 | 173 181 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  ran  𝑙  ⊆  𝑌 ) | 
						
							| 183 |  | df-f | ⊢ ( 𝑙 : ran  𝐺 ⟶ 𝑌  ↔  ( 𝑙  Fn  ran  𝐺  ∧  ran  𝑙  ⊆  𝑌 ) ) | 
						
							| 184 | 28 182 183 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  𝑙 : ran  𝐺 ⟶ 𝑌 ) | 
						
							| 185 |  | dffn3 | ⊢ ( 𝐺  Fn  𝑅  ↔  𝐺 : 𝑅 ⟶ ran  𝐺 ) | 
						
							| 186 | 63 185 | sylib | ⊢ ( 𝜑  →  𝐺 : 𝑅 ⟶ ran  𝐺 ) | 
						
							| 187 | 186 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  𝐺 : 𝑅 ⟶ ran  𝐺 ) | 
						
							| 188 |  | f1of | ⊢ ( 𝑣 : ( 1 ... 𝑀 ) –1-1-onto→ 𝑅  →  𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 ) | 
						
							| 189 | 9 188 | syl | ⊢ ( 𝜑  →  𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 ) | 
						
							| 190 | 189 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 ) | 
						
							| 191 |  | fco | ⊢ ( ( 𝐺 : 𝑅 ⟶ ran  𝐺  ∧  𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 )  →  ( 𝐺  ∘  𝑣 ) : ( 1 ... 𝑀 ) ⟶ ran  𝐺 ) | 
						
							| 192 | 187 190 191 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  ( 𝐺  ∘  𝑣 ) : ( 1 ... 𝑀 ) ⟶ ran  𝐺 ) | 
						
							| 193 |  | fco | ⊢ ( ( 𝑙 : ran  𝐺 ⟶ 𝑌  ∧  ( 𝐺  ∘  𝑣 ) : ( 1 ... 𝑀 ) ⟶ ran  𝐺 )  →  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ) | 
						
							| 194 | 184 192 193 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ) | 
						
							| 195 |  | fvco3 | ⊢ ( ( ( 𝐺  ∘  𝑣 ) : ( 1 ... 𝑀 ) ⟶ ran  𝐺  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  =  ( 𝑙 ‘ ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) ) ) | 
						
							| 196 | 192 195 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  =  ( 𝑙 ‘ ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) ) ) | 
						
							| 197 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝜑 ) | 
						
							| 198 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) | 
						
							| 199 | 192 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ∈  ran  𝐺 ) | 
						
							| 200 |  | simp3 | ⊢ ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ∈  ran  𝐺 )  →  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ∈  ran  𝐺 ) | 
						
							| 201 |  | nfv | ⊢ Ⅎ 𝑏 ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ∈  ran  𝐺 | 
						
							| 202 | 43 45 201 | nf3an | ⊢ Ⅎ 𝑏 ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ∈  ran  𝐺 ) | 
						
							| 203 |  | nfv | ⊢ Ⅎ 𝑏 ( 𝑙 ‘ ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) )  ∈  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) | 
						
							| 204 | 202 203 | nfim | ⊢ Ⅎ 𝑏 ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ∈  ran  𝐺 )  →  ( 𝑙 ‘ ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) )  ∈  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) ) | 
						
							| 205 |  | eleq1 | ⊢ ( 𝑏  =  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  →  ( 𝑏  ∈  ran  𝐺  ↔  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ∈  ran  𝐺 ) ) | 
						
							| 206 | 205 | 3anbi3d | ⊢ ( 𝑏  =  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  →  ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑏  ∈  ran  𝐺 )  ↔  ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ∈  ran  𝐺 ) ) ) | 
						
							| 207 |  | fveq2 | ⊢ ( 𝑏  =  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  →  ( 𝑙 ‘ 𝑏 )  =  ( 𝑙 ‘ ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) ) ) | 
						
							| 208 |  | id | ⊢ ( 𝑏  =  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  →  𝑏  =  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) ) | 
						
							| 209 | 207 208 | eleq12d | ⊢ ( 𝑏  =  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  →  ( ( 𝑙 ‘ 𝑏 )  ∈  𝑏  ↔  ( 𝑙 ‘ ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) )  ∈  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) ) ) | 
						
							| 210 | 206 209 | imbi12d | ⊢ ( 𝑏  =  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  →  ( ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  𝑏  ∈  ran  𝐺 )  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ↔  ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ∈  ran  𝐺 )  →  ( 𝑙 ‘ ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) )  ∈  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) ) ) ) | 
						
							| 211 | 204 210 126 | vtoclg1f | ⊢ ( ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ∈  ran  𝐺  →  ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ∈  ran  𝐺 )  →  ( 𝑙 ‘ ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) )  ∈  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) ) ) | 
						
							| 212 | 200 211 | mpcom | ⊢ ( ( 𝜑  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 )  ∧  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ∈  ran  𝐺 )  →  ( 𝑙 ‘ ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) )  ∈  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) ) | 
						
							| 213 | 197 198 199 212 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑙 ‘ ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) )  ∈  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) ) | 
						
							| 214 | 196 213 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  ∈  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 ) ) | 
						
							| 215 |  | fvco3 | ⊢ ( ( 𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  =  ( 𝐺 ‘ ( 𝑣 ‘ 𝑖 ) ) ) | 
						
							| 216 | 189 215 | sylan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  =  ( 𝐺 ‘ ( 𝑣 ‘ 𝑖 ) ) ) | 
						
							| 217 |  | raleq | ⊢ ( 𝑤  =  ( 𝑣 ‘ 𝑖 )  →  ( ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ↔  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 218 | 217 | 3anbi2d | ⊢ ( 𝑤  =  ( 𝑣 ‘ 𝑖 )  →  ( ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) )  ↔  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) ) ) | 
						
							| 219 | 218 | rabbidv | ⊢ ( 𝑤  =  ( 𝑣 ‘ 𝑖 )  →  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 220 | 189 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑣 ‘ 𝑖 )  ∈  𝑅 ) | 
						
							| 221 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐴  ∈  V ) | 
						
							| 222 |  | rabexg | ⊢ ( 𝐴  ∈  V  →  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ∈  V ) | 
						
							| 223 | 221 222 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ∈  V ) | 
						
							| 224 | 6 219 220 223 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ ( 𝑣 ‘ 𝑖 ) )  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 225 | 216 224 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 226 | 225 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  =  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 227 | 226 | eleq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  ∈  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  ↔  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) ) | 
						
							| 228 |  | nfcv | ⊢ Ⅎ ℎ 𝑣 | 
						
							| 229 | 33 228 | nfco | ⊢ Ⅎ ℎ ( 𝐺  ∘  𝑣 ) | 
						
							| 230 | 29 229 | nfco | ⊢ Ⅎ ℎ ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) | 
						
							| 231 |  | nfcv | ⊢ Ⅎ ℎ 𝑖 | 
						
							| 232 | 230 231 | nffv | ⊢ Ⅎ ℎ ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) | 
						
							| 233 |  | nfcv | ⊢ Ⅎ ℎ 𝐴 | 
						
							| 234 |  | nfcv | ⊢ Ⅎ ℎ 𝑇 | 
						
							| 235 |  | nfcv | ⊢ Ⅎ ℎ 0 | 
						
							| 236 |  | nfcv | ⊢ Ⅎ ℎ  ≤ | 
						
							| 237 |  | nfcv | ⊢ Ⅎ ℎ 𝑡 | 
						
							| 238 | 232 237 | nffv | ⊢ Ⅎ ℎ ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) | 
						
							| 239 | 235 236 238 | nfbr | ⊢ Ⅎ ℎ 0  ≤  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) | 
						
							| 240 |  | nfcv | ⊢ Ⅎ ℎ 1 | 
						
							| 241 | 238 236 240 | nfbr | ⊢ Ⅎ ℎ ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 | 
						
							| 242 | 239 241 | nfan | ⊢ Ⅎ ℎ ( 0  ≤  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 243 | 234 242 | nfralw | ⊢ Ⅎ ℎ ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 244 |  | nfcv | ⊢ Ⅎ ℎ ( 𝑣 ‘ 𝑖 ) | 
						
							| 245 |  | nfcv | ⊢ Ⅎ ℎ  < | 
						
							| 246 |  | nfcv | ⊢ Ⅎ ℎ ( 𝐸  /  𝑀 ) | 
						
							| 247 | 238 245 246 | nfbr | ⊢ Ⅎ ℎ ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) | 
						
							| 248 | 244 247 | nfralw | ⊢ Ⅎ ℎ ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) | 
						
							| 249 |  | nfcv | ⊢ Ⅎ ℎ ( 𝑇  ∖  𝑈 ) | 
						
							| 250 |  | nfcv | ⊢ Ⅎ ℎ ( 1  −  ( 𝐸  /  𝑀 ) ) | 
						
							| 251 | 250 245 238 | nfbr | ⊢ Ⅎ ℎ ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) | 
						
							| 252 | 249 251 | nfralw | ⊢ Ⅎ ℎ ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) | 
						
							| 253 | 243 248 252 | nf3an | ⊢ Ⅎ ℎ ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 254 |  | nfcv | ⊢ Ⅎ 𝑡 ℎ | 
						
							| 255 |  | nfcv | ⊢ Ⅎ 𝑡 𝑙 | 
						
							| 256 |  | nfcv | ⊢ Ⅎ 𝑡 𝑅 | 
						
							| 257 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) | 
						
							| 258 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) | 
						
							| 259 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) | 
						
							| 260 | 257 258 259 | nf3an | ⊢ Ⅎ 𝑡 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) | 
						
							| 261 |  | nfcv | ⊢ Ⅎ 𝑡 𝐴 | 
						
							| 262 | 260 261 | nfrabw | ⊢ Ⅎ 𝑡 { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } | 
						
							| 263 | 256 262 | nfmpt | ⊢ Ⅎ 𝑡 ( 𝑤  ∈  𝑅  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) } ) | 
						
							| 264 | 6 263 | nfcxfr | ⊢ Ⅎ 𝑡 𝐺 | 
						
							| 265 |  | nfcv | ⊢ Ⅎ 𝑡 𝑣 | 
						
							| 266 | 264 265 | nfco | ⊢ Ⅎ 𝑡 ( 𝐺  ∘  𝑣 ) | 
						
							| 267 | 255 266 | nfco | ⊢ Ⅎ 𝑡 ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) | 
						
							| 268 |  | nfcv | ⊢ Ⅎ 𝑡 𝑖 | 
						
							| 269 | 267 268 | nffv | ⊢ Ⅎ 𝑡 ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) | 
						
							| 270 | 254 269 | nfeq | ⊢ Ⅎ 𝑡 ℎ  =  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) | 
						
							| 271 |  | fveq1 | ⊢ ( ℎ  =  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  →  ( ℎ ‘ 𝑡 )  =  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 272 | 271 | breq2d | ⊢ ( ℎ  =  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  →  ( 0  ≤  ( ℎ ‘ 𝑡 )  ↔  0  ≤  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 273 | 271 | breq1d | ⊢ ( ℎ  =  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  →  ( ( ℎ ‘ 𝑡 )  ≤  1  ↔  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 274 | 272 273 | anbi12d | ⊢ ( ℎ  =  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  →  ( ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 275 | 270 274 | ralbid | ⊢ ( ℎ  =  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 276 | 271 | breq1d | ⊢ ( ℎ  =  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  →  ( ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ↔  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 277 | 270 276 | ralbid | ⊢ ( ℎ  =  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  →  ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ↔  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 278 | 271 | breq2d | ⊢ ( ℎ  =  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  →  ( ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 )  ↔  ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 279 | 270 278 | ralbid | ⊢ ( ℎ  =  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  →  ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 280 | 275 277 279 | 3anbi123d | ⊢ ( ℎ  =  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  →  ( ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) )  ↔  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 281 | 232 233 253 280 | elrabf | ⊢ ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  ↔  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 282 | 281 | simprbi | ⊢ ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 283 | 282 | simp2d | ⊢ ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  →  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) | 
						
							| 284 | 227 283 | biimtrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  ∈  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  →  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 285 | 214 284 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) | 
						
							| 286 | 264 | nfrn | ⊢ Ⅎ 𝑡 ran  𝐺 | 
						
							| 287 | 255 286 | nffn | ⊢ Ⅎ 𝑡 𝑙  Fn  ran  𝐺 | 
						
							| 288 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) | 
						
							| 289 | 286 288 | nfralw | ⊢ Ⅎ 𝑡 ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) | 
						
							| 290 | 287 289 | nfan | ⊢ Ⅎ 𝑡 ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) | 
						
							| 291 | 2 290 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) ) | 
						
							| 292 |  | nfv | ⊢ Ⅎ 𝑡 𝑖  ∈  ( 1 ... 𝑀 ) | 
						
							| 293 | 291 292 | nfan | ⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 294 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  𝐵 )  →  𝐵  ⊆  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 295 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  𝐵 )  →  𝑡  ∈  𝐵 ) | 
						
							| 296 | 294 295 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  𝐵 )  →  𝑡  ∈  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 297 | 282 | simp3d | ⊢ ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  ∈  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ℎ ‘ 𝑡 ) ) }  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 298 | 227 297 | biimtrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 )  ∈  ( ( 𝐺  ∘  𝑣 ) ‘ 𝑖 )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 299 | 214 298 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 300 | 299 | r19.21bi | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 301 | 296 300 | syldan | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  𝐵 )  →  ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 302 | 301 | ex | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑡  ∈  𝐵  →  ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 303 | 293 302 | ralrimi | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 304 | 285 303 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 305 | 304 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 306 | 194 305 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 307 |  | feq1 | ⊢ ( 𝑥  =  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  →  ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌  ↔  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ) ) | 
						
							| 308 |  | nfcv | ⊢ Ⅎ 𝑡 𝑥 | 
						
							| 309 | 308 267 | nfeq | ⊢ Ⅎ 𝑡 𝑥  =  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) | 
						
							| 310 |  | fveq1 | ⊢ ( 𝑥  =  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  →  ( 𝑥 ‘ 𝑖 )  =  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ) | 
						
							| 311 | 310 | fveq1d | ⊢ ( 𝑥  =  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  →  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 312 | 311 | breq1d | ⊢ ( 𝑥  =  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  →  ( ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ↔  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 313 | 309 312 | ralbid | ⊢ ( 𝑥  =  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  →  ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ↔  ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 314 | 311 | breq2d | ⊢ ( 𝑥  =  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  →  ( ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  ↔  ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 315 | 309 314 | ralbid | ⊢ ( 𝑥  =  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  →  ( ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 316 | 313 315 | anbi12d | ⊢ ( 𝑥  =  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  →  ( ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) )  ↔  ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 317 | 316 | ralbidv | ⊢ ( 𝑥  =  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) )  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 318 | 307 317 | anbi12d | ⊢ ( 𝑥  =  ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  →  ( ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ↔  ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 319 | 318 | spcegv | ⊢ ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) )  ∈  V  →  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( ( 𝑙  ∘  ( 𝐺  ∘  𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 320 | 27 306 319 | sylc | ⊢ ( ( 𝜑  ∧  ( 𝑙  Fn  ran  𝐺  ∧  ∀ 𝑏  ∈  ran  𝐺 ( 𝑏  ≠  ∅  →  ( 𝑙 ‘ 𝑏 )  ∈  𝑏 ) ) )  →  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 321 | 16 320 | exlimddv | ⊢ ( 𝜑  →  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |