| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem32.1 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 2 |  | stoweidlem32.2 | ⊢ 𝑃  =  ( 𝑡  ∈  𝑇  ↦  ( 𝑌  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 3 |  | stoweidlem32.3 | ⊢ 𝐹  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 4 |  | stoweidlem32.4 | ⊢ 𝐻  =  ( 𝑡  ∈  𝑇  ↦  𝑌 ) | 
						
							| 5 |  | stoweidlem32.5 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 6 |  | stoweidlem32.6 | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 7 |  | stoweidlem32.7 | ⊢ ( 𝜑  →  𝐺 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) | 
						
							| 8 |  | stoweidlem32.8 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 9 |  | stoweidlem32.9 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 10 |  | stoweidlem32.10 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 11 |  | stoweidlem32.11 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑡  =  𝑠  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) | 
						
							| 13 | 12 | sumeq2sdv | ⊢ ( 𝑡  =  𝑠  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) | 
						
							| 14 | 13 | cbvmptv | ⊢ ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑠  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) | 
						
							| 15 | 3 14 | eqtri | ⊢ 𝐹  =  ( 𝑠  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 )  =  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 17 | 16 | sumeq2sdv | ⊢ ( 𝑠  =  𝑡  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 )  =  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 19 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 20 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝜑 ) | 
						
							| 21 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 ) | 
						
							| 22 |  | eleq1 | ⊢ ( 𝑓  =  ( 𝐺 ‘ 𝑖 )  →  ( 𝑓  ∈  𝐴  ↔  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 ) ) | 
						
							| 23 | 22 | anbi2d | ⊢ ( 𝑓  =  ( 𝐺 ‘ 𝑖 )  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ↔  ( 𝜑  ∧  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 ) ) ) | 
						
							| 24 |  | feq1 | ⊢ ( 𝑓  =  ( 𝐺 ‘ 𝑖 )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 25 | 23 24 | imbi12d | ⊢ ( 𝑓  =  ( 𝐺 ‘ 𝑖 )  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 26 | 25 11 | vtoclg | ⊢ ( ( 𝐺 ‘ 𝑖 )  ∈  𝐴  →  ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 27 | 21 26 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑖 )  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 28 | 20 21 27 | mp2and | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) | 
						
							| 29 | 28 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) | 
						
							| 30 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 31 | 29 30 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 32 | 19 31 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 33 | 15 17 18 32 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  =  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 34 | 33 32 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 35 | 34 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 36 |  | eqidd | ⊢ ( 𝑠  =  𝑡  →  𝑌  =  𝑌 ) | 
						
							| 37 | 36 | cbvmptv | ⊢ ( 𝑠  ∈  𝑇  ↦  𝑌 )  =  ( 𝑡  ∈  𝑇  ↦  𝑌 ) | 
						
							| 38 | 4 37 | eqtr4i | ⊢ 𝐻  =  ( 𝑠  ∈  𝑇  ↦  𝑌 ) | 
						
							| 39 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑌  ∈  ℝ ) | 
						
							| 40 | 38 36 18 39 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 )  =  𝑌 ) | 
						
							| 41 | 40 39 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 42 | 41 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 43 | 35 42 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐻 ‘ 𝑡 ) )  =  ( ( 𝐻 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 44 | 40 33 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐻 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) )  =  ( 𝑌  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 45 | 43 44 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑌  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐻 ‘ 𝑡 ) ) ) | 
						
							| 46 | 1 45 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( 𝑌  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐻 ‘ 𝑡 ) ) ) ) | 
						
							| 47 | 2 46 | eqtrid | ⊢ ( 𝜑  →  𝑃  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐻 ‘ 𝑡 ) ) ) ) | 
						
							| 48 | 1 3 5 7 8 11 | stoweidlem20 | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 49 | 10 | stoweidlem4 | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑌 )  ∈  𝐴 ) | 
						
							| 50 | 6 49 | mpdan | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝑌 )  ∈  𝐴 ) | 
						
							| 51 | 4 50 | eqeltrid | ⊢ ( 𝜑  →  𝐻  ∈  𝐴 ) | 
						
							| 52 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 53 | 3 52 | nfcxfr | ⊢ Ⅎ 𝑡 𝐹 | 
						
							| 54 | 53 | nfeq2 | ⊢ Ⅎ 𝑡 𝑓  =  𝐹 | 
						
							| 55 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  𝑌 ) | 
						
							| 56 | 4 55 | nfcxfr | ⊢ Ⅎ 𝑡 𝐻 | 
						
							| 57 | 56 | nfeq2 | ⊢ Ⅎ 𝑡 𝑔  =  𝐻 | 
						
							| 58 | 54 57 9 | stoweidlem6 | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐻  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐻 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 59 | 48 51 58 | mpd3an23 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐻 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 60 | 47 59 | eqeltrd | ⊢ ( 𝜑  →  𝑃  ∈  𝐴 ) |