Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem32.1 |
|
2 |
|
stoweidlem32.2 |
|
3 |
|
stoweidlem32.3 |
|
4 |
|
stoweidlem32.4 |
|
5 |
|
stoweidlem32.5 |
|
6 |
|
stoweidlem32.6 |
|
7 |
|
stoweidlem32.7 |
|
8 |
|
stoweidlem32.8 |
|
9 |
|
stoweidlem32.9 |
|
10 |
|
stoweidlem32.10 |
|
11 |
|
stoweidlem32.11 |
|
12 |
|
fveq2 |
|
13 |
12
|
sumeq2sdv |
|
14 |
13
|
cbvmptv |
|
15 |
3 14
|
eqtri |
|
16 |
|
fveq2 |
|
17 |
16
|
sumeq2sdv |
|
18 |
|
simpr |
|
19 |
|
fzfid |
|
20 |
|
simpl |
|
21 |
7
|
ffvelrnda |
|
22 |
|
eleq1 |
|
23 |
22
|
anbi2d |
|
24 |
|
feq1 |
|
25 |
23 24
|
imbi12d |
|
26 |
25 11
|
vtoclg |
|
27 |
21 26
|
syl |
|
28 |
20 21 27
|
mp2and |
|
29 |
28
|
adantlr |
|
30 |
|
simplr |
|
31 |
29 30
|
ffvelrnd |
|
32 |
19 31
|
fsumrecl |
|
33 |
15 17 18 32
|
fvmptd3 |
|
34 |
33 32
|
eqeltrd |
|
35 |
34
|
recnd |
|
36 |
|
eqidd |
|
37 |
36
|
cbvmptv |
|
38 |
4 37
|
eqtr4i |
|
39 |
6
|
adantr |
|
40 |
38 36 18 39
|
fvmptd3 |
|
41 |
40 39
|
eqeltrd |
|
42 |
41
|
recnd |
|
43 |
35 42
|
mulcomd |
|
44 |
40 33
|
oveq12d |
|
45 |
43 44
|
eqtr2d |
|
46 |
1 45
|
mpteq2da |
|
47 |
2 46
|
eqtrid |
|
48 |
1 3 5 7 8 11
|
stoweidlem20 |
|
49 |
10
|
stoweidlem4 |
|
50 |
6 49
|
mpdan |
|
51 |
4 50
|
eqeltrid |
|
52 |
|
nfmpt1 |
|
53 |
3 52
|
nfcxfr |
|
54 |
53
|
nfeq2 |
|
55 |
|
nfmpt1 |
|
56 |
4 55
|
nfcxfr |
|
57 |
56
|
nfeq2 |
|
58 |
54 57 9
|
stoweidlem6 |
|
59 |
48 51 58
|
mpd3an23 |
|
60 |
47 59
|
eqeltrd |
|