| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem32.1 |
|
| 2 |
|
stoweidlem32.2 |
|
| 3 |
|
stoweidlem32.3 |
|
| 4 |
|
stoweidlem32.4 |
|
| 5 |
|
stoweidlem32.5 |
|
| 6 |
|
stoweidlem32.6 |
|
| 7 |
|
stoweidlem32.7 |
|
| 8 |
|
stoweidlem32.8 |
|
| 9 |
|
stoweidlem32.9 |
|
| 10 |
|
stoweidlem32.10 |
|
| 11 |
|
stoweidlem32.11 |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
sumeq2sdv |
|
| 14 |
13
|
cbvmptv |
|
| 15 |
3 14
|
eqtri |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
sumeq2sdv |
|
| 18 |
|
simpr |
|
| 19 |
|
fzfid |
|
| 20 |
|
simpl |
|
| 21 |
7
|
ffvelcdmda |
|
| 22 |
|
eleq1 |
|
| 23 |
22
|
anbi2d |
|
| 24 |
|
feq1 |
|
| 25 |
23 24
|
imbi12d |
|
| 26 |
25 11
|
vtoclg |
|
| 27 |
21 26
|
syl |
|
| 28 |
20 21 27
|
mp2and |
|
| 29 |
28
|
adantlr |
|
| 30 |
|
simplr |
|
| 31 |
29 30
|
ffvelcdmd |
|
| 32 |
19 31
|
fsumrecl |
|
| 33 |
15 17 18 32
|
fvmptd3 |
|
| 34 |
33 32
|
eqeltrd |
|
| 35 |
34
|
recnd |
|
| 36 |
|
eqidd |
|
| 37 |
36
|
cbvmptv |
|
| 38 |
4 37
|
eqtr4i |
|
| 39 |
6
|
adantr |
|
| 40 |
38 36 18 39
|
fvmptd3 |
|
| 41 |
40 39
|
eqeltrd |
|
| 42 |
41
|
recnd |
|
| 43 |
35 42
|
mulcomd |
|
| 44 |
40 33
|
oveq12d |
|
| 45 |
43 44
|
eqtr2d |
|
| 46 |
1 45
|
mpteq2da |
|
| 47 |
2 46
|
eqtrid |
|
| 48 |
1 3 5 7 8 11
|
stoweidlem20 |
|
| 49 |
10
|
stoweidlem4 |
|
| 50 |
6 49
|
mpdan |
|
| 51 |
4 50
|
eqeltrid |
|
| 52 |
|
nfmpt1 |
|
| 53 |
3 52
|
nfcxfr |
|
| 54 |
53
|
nfeq2 |
|
| 55 |
|
nfmpt1 |
|
| 56 |
4 55
|
nfcxfr |
|
| 57 |
56
|
nfeq2 |
|
| 58 |
54 57 9
|
stoweidlem6 |
|
| 59 |
48 51 58
|
mpd3an23 |
|
| 60 |
47 59
|
eqeltrd |
|