Metamath Proof Explorer


Theorem stoweidlem32

Description: If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem32.1 t φ
stoweidlem32.2 P = t T Y i = 1 M G i t
stoweidlem32.3 F = t T i = 1 M G i t
stoweidlem32.4 H = t T Y
stoweidlem32.5 φ M
stoweidlem32.6 φ Y
stoweidlem32.7 φ G : 1 M A
stoweidlem32.8 φ f A g A t T f t + g t A
stoweidlem32.9 φ f A g A t T f t g t A
stoweidlem32.10 φ x t T x A
stoweidlem32.11 φ f A f : T
Assertion stoweidlem32 φ P A

Proof

Step Hyp Ref Expression
1 stoweidlem32.1 t φ
2 stoweidlem32.2 P = t T Y i = 1 M G i t
3 stoweidlem32.3 F = t T i = 1 M G i t
4 stoweidlem32.4 H = t T Y
5 stoweidlem32.5 φ M
6 stoweidlem32.6 φ Y
7 stoweidlem32.7 φ G : 1 M A
8 stoweidlem32.8 φ f A g A t T f t + g t A
9 stoweidlem32.9 φ f A g A t T f t g t A
10 stoweidlem32.10 φ x t T x A
11 stoweidlem32.11 φ f A f : T
12 fveq2 t = s G i t = G i s
13 12 sumeq2sdv t = s i = 1 M G i t = i = 1 M G i s
14 13 cbvmptv t T i = 1 M G i t = s T i = 1 M G i s
15 3 14 eqtri F = s T i = 1 M G i s
16 fveq2 s = t G i s = G i t
17 16 sumeq2sdv s = t i = 1 M G i s = i = 1 M G i t
18 simpr φ t T t T
19 fzfid φ t T 1 M Fin
20 simpl φ i 1 M φ
21 7 ffvelrnda φ i 1 M G i A
22 eleq1 f = G i f A G i A
23 22 anbi2d f = G i φ f A φ G i A
24 feq1 f = G i f : T G i : T
25 23 24 imbi12d f = G i φ f A f : T φ G i A G i : T
26 25 11 vtoclg G i A φ G i A G i : T
27 21 26 syl φ i 1 M φ G i A G i : T
28 20 21 27 mp2and φ i 1 M G i : T
29 28 adantlr φ t T i 1 M G i : T
30 simplr φ t T i 1 M t T
31 29 30 ffvelrnd φ t T i 1 M G i t
32 19 31 fsumrecl φ t T i = 1 M G i t
33 15 17 18 32 fvmptd3 φ t T F t = i = 1 M G i t
34 33 32 eqeltrd φ t T F t
35 34 recnd φ t T F t
36 eqidd s = t Y = Y
37 36 cbvmptv s T Y = t T Y
38 4 37 eqtr4i H = s T Y
39 6 adantr φ t T Y
40 38 36 18 39 fvmptd3 φ t T H t = Y
41 40 39 eqeltrd φ t T H t
42 41 recnd φ t T H t
43 35 42 mulcomd φ t T F t H t = H t F t
44 40 33 oveq12d φ t T H t F t = Y i = 1 M G i t
45 43 44 eqtr2d φ t T Y i = 1 M G i t = F t H t
46 1 45 mpteq2da φ t T Y i = 1 M G i t = t T F t H t
47 2 46 syl5eq φ P = t T F t H t
48 1 3 5 7 8 11 stoweidlem20 φ F A
49 10 stoweidlem4 φ Y t T Y A
50 6 49 mpdan φ t T Y A
51 4 50 eqeltrid φ H A
52 nfmpt1 _ t t T i = 1 M G i t
53 3 52 nfcxfr _ t F
54 53 nfeq2 t f = F
55 nfmpt1 _ t t T Y
56 4 55 nfcxfr _ t H
57 56 nfeq2 t g = H
58 54 57 9 stoweidlem6 φ F A H A t T F t H t A
59 48 51 58 mpd3an23 φ t T F t H t A
60 47 59 eqeltrd φ P A