Metamath Proof Explorer


Theorem stoweidlem31

Description: This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in BrosowskiDeutsh p. 91: assuming that R is a finite subset of V , x indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ x_i ≤ 1, x_i < ε / m on V(t_i), and x_i > 1 - ε / m on B . Here M is used to represent m in the paper, E is used to represent ε in the paper, v_i is used to represent V(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem31.1 h φ
stoweidlem31.2 t φ
stoweidlem31.3 w φ
stoweidlem31.4 Y = h A | t T 0 h t h t 1
stoweidlem31.5 V = w J | e + h A t T 0 h t h t 1 t w h t < e t T U 1 e < h t
stoweidlem31.6 G = w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
stoweidlem31.7 φ R V
stoweidlem31.8 φ M
stoweidlem31.9 φ v : 1 M 1-1 onto R
stoweidlem31.10 φ E +
stoweidlem31.11 φ B T U
stoweidlem31.12 φ V V
stoweidlem31.13 φ A V
stoweidlem31.14 φ ran G Fin
Assertion stoweidlem31 φ x x : 1 M Y i 1 M t v i x i t < E M t B 1 E M < x i t

Proof

Step Hyp Ref Expression
1 stoweidlem31.1 h φ
2 stoweidlem31.2 t φ
3 stoweidlem31.3 w φ
4 stoweidlem31.4 Y = h A | t T 0 h t h t 1
5 stoweidlem31.5 V = w J | e + h A t T 0 h t h t 1 t w h t < e t T U 1 e < h t
6 stoweidlem31.6 G = w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
7 stoweidlem31.7 φ R V
8 stoweidlem31.8 φ M
9 stoweidlem31.9 φ v : 1 M 1-1 onto R
10 stoweidlem31.10 φ E +
11 stoweidlem31.11 φ B T U
12 stoweidlem31.12 φ V V
13 stoweidlem31.13 φ A V
14 stoweidlem31.14 φ ran G Fin
15 fnchoice ran G Fin l l Fn ran G b ran G b l b b
16 14 15 syl φ l l Fn ran G b ran G b l b b
17 vex l V
18 12 7 ssexd φ R V
19 mptexg R V w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t V
20 18 19 syl φ w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t V
21 6 20 eqeltrid φ G V
22 vex v V
23 coexg G V v V G v V
24 21 22 23 sylancl φ G v V
25 coexg l V G v V l G v V
26 17 24 25 sylancr φ l G v V
27 26 adantr φ l Fn ran G b ran G b l b b l G v V
28 simprl φ l Fn ran G b ran G b l b b l Fn ran G
29 nfcv _ h l
30 nfcv _ h R
31 nfrab1 _ h h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
32 30 31 nfmpt _ h w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
33 6 32 nfcxfr _ h G
34 33 nfrn _ h ran G
35 29 34 nffn h l Fn ran G
36 nfv h b l b b
37 34 36 nfralw h b ran G b l b b
38 35 37 nfan h l Fn ran G b ran G b l b b
39 1 38 nfan h φ l Fn ran G b ran G b l b b
40 fvelrnb l Fn ran G h ran l b ran G l b = h
41 28 40 syl φ l Fn ran G b ran G b l b b h ran l b ran G l b = h
42 41 biimpa φ l Fn ran G b ran G b l b b h ran l b ran G l b = h
43 nfv b φ
44 nfv b l Fn ran G
45 nfra1 b b ran G b l b b
46 44 45 nfan b l Fn ran G b ran G b l b b
47 43 46 nfan b φ l Fn ran G b ran G b l b b
48 nfv b h ran l
49 47 48 nfan b φ l Fn ran G b ran G b l b b h ran l
50 simp3 φ l Fn ran G b ran G b l b b h ran l b ran G l b = h l b = h
51 simp1ll φ l Fn ran G b ran G b l b b h ran l b ran G l b = h φ
52 simplrr φ l Fn ran G b ran G b l b b h ran l b ran G b l b b
53 52 3ad2ant1 φ l Fn ran G b ran G b l b b h ran l b ran G l b = h b ran G b l b b
54 simp2 φ l Fn ran G b ran G b l b b h ran l b ran G l b = h b ran G
55 simp3 φ b ran G b l b b b ran G b ran G
56 3simpc φ b ran G b l b b b ran G b ran G b l b b b ran G
57 simpr φ b ran G b ran G
58 rabexg A V h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t V
59 13 58 syl φ h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t V
60 59 a1d φ w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t V
61 3 60 ralrimi φ w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t V
62 6 fnmpt w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t V G Fn R
63 61 62 syl φ G Fn R
64 63 adantr φ b ran G G Fn R
65 fvelrnb G Fn R b ran G u R G u = b
66 nfmpt1 _ w w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
67 6 66 nfcxfr _ w G
68 nfcv _ w u
69 67 68 nffv _ w G u
70 nfcv _ w b
71 69 70 nfeq w G u = b
72 nfv u G w = b
73 fveq2 u = w G u = G w
74 73 eqeq1d u = w G u = b G w = b
75 71 72 74 cbvrexw u R G u = b w R G w = b
76 65 75 bitrdi G Fn R b ran G w R G w = b
77 64 76 syl φ b ran G b ran G w R G w = b
78 57 77 mpbid φ b ran G w R G w = b
79 67 nfrn _ w ran G
80 79 nfcri w b ran G
81 3 80 nfan w φ b ran G
82 nfv w b
83 simp3 φ w R G w = b G w = b
84 simpr φ w R w R
85 13 adantr φ w R A V
86 85 58 syl φ w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t V
87 6 fvmpt2 w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t V G w = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
88 84 86 87 syl2anc φ w R G w = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
89 7 sselda φ w R w V
90 5 rabeq2i w V w J e + h A t T 0 h t h t 1 t w h t < e t T U 1 e < h t
91 89 90 sylib φ w R w J e + h A t T 0 h t h t 1 t w h t < e t T U 1 e < h t
92 91 simprd φ w R e + h A t T 0 h t h t 1 t w h t < e t T U 1 e < h t
93 8 nnrpd φ M +
94 10 93 rpdivcld φ E M +
95 94 adantr φ w R E M +
96 breq2 e = E M h t < e h t < E M
97 96 ralbidv e = E M t w h t < e t w h t < E M
98 oveq2 e = E M 1 e = 1 E M
99 98 breq1d e = E M 1 e < h t 1 E M < h t
100 99 ralbidv e = E M t T U 1 e < h t t T U 1 E M < h t
101 97 100 3anbi23d e = E M t T 0 h t h t 1 t w h t < e t T U 1 e < h t t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
102 101 rexbidv e = E M h A t T 0 h t h t 1 t w h t < e t T U 1 e < h t h A t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
103 102 rspccva e + h A t T 0 h t h t 1 t w h t < e t T U 1 e < h t E M + h A t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
104 92 95 103 syl2anc φ w R h A t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
105 nfv h w R
106 1 105 nfan h φ w R
107 nfcv _ h
108 31 107 nfne h h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
109 3simpc φ w R h A t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t h A t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
110 rabid h h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t h A t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
111 109 110 sylibr φ w R h A t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t h h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
112 ne0i h h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
113 111 112 syl φ w R h A t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
114 113 3exp φ w R h A t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
115 106 108 114 rexlimd φ w R h A t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
116 104 115 mpd φ w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
117 88 116 eqnetrd φ w R G w
118 117 3adant3 φ w R G w = b G w
119 83 118 eqnetrrd φ w R G w = b b
120 119 3adant1r φ b ran G w R G w = b b
121 120 3exp φ b ran G w R G w = b b
122 81 82 121 rexlimd φ b ran G w R G w = b b
123 78 122 mpd φ b ran G b
124 123 3adant2 φ b ran G b l b b b ran G b
125 rspa b ran G b l b b b ran G b l b b
126 56 124 125 sylc φ b ran G b l b b b ran G l b b
127 55 126 jca φ b ran G b l b b b ran G b ran G l b b
128 vex b V
129 6 elrnmpt b V b ran G w R b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
130 128 129 ax-mp b ran G w R b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
131 55 130 sylib φ b ran G b l b b b ran G w R b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
132 nfv w l b b
133 80 132 nfan w b ran G l b b
134 nfv w l b Y
135 simp1r b ran G l b b w R b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t l b b
136 simp3 b ran G l b b w R b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
137 simpl l b b b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t l b b
138 simpr l b b b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
139 137 138 eleqtrd l b b b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t l b h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
140 elrabi l b h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t l b A
141 fveq1 h = l b h t = l b t
142 141 breq2d h = l b 0 h t 0 l b t
143 141 breq1d h = l b h t 1 l b t 1
144 142 143 anbi12d h = l b 0 h t h t 1 0 l b t l b t 1
145 144 ralbidv h = l b t T 0 h t h t 1 t T 0 l b t l b t 1
146 141 breq1d h = l b h t < E M l b t < E M
147 146 ralbidv h = l b t w h t < E M t w l b t < E M
148 141 breq2d h = l b 1 E M < h t 1 E M < l b t
149 148 ralbidv h = l b t T U 1 E M < h t t T U 1 E M < l b t
150 145 147 149 3anbi123d h = l b t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t t T 0 l b t l b t 1 t w l b t < E M t T U 1 E M < l b t
151 150 elrab l b h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t l b A t T 0 l b t l b t 1 t w l b t < E M t T U 1 E M < l b t
152 151 simprbi l b h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t t T 0 l b t l b t 1 t w l b t < E M t T U 1 E M < l b t
153 152 simp1d l b h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t t T 0 l b t l b t 1
154 145 elrab l b h A | t T 0 h t h t 1 l b A t T 0 l b t l b t 1
155 140 153 154 sylanbrc l b h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t l b h A | t T 0 h t h t 1
156 139 155 syl l b b b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t l b h A | t T 0 h t h t 1
157 156 4 eleqtrrdi l b b b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t l b Y
158 135 136 157 syl2anc b ran G l b b w R b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t l b Y
159 158 3exp b ran G l b b w R b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t l b Y
160 133 134 159 rexlimd b ran G l b b w R b = h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t l b Y
161 127 131 160 sylc φ b ran G b l b b b ran G l b Y
162 51 53 54 161 syl3anc φ l Fn ran G b ran G b l b b h ran l b ran G l b = h l b Y
163 50 162 eqeltrrd φ l Fn ran G b ran G b l b b h ran l b ran G l b = h h Y
164 163 3exp φ l Fn ran G b ran G b l b b h ran l b ran G l b = h h Y
165 49 164 reximdai φ l Fn ran G b ran G b l b b h ran l b ran G l b = h b ran G h Y
166 42 165 mpd φ l Fn ran G b ran G b l b b h ran l b ran G h Y
167 nfv b h Y
168 idd b ran G h Y h Y
169 168 a1i φ l Fn ran G b ran G b l b b h ran l b ran G h Y h Y
170 49 167 169 rexlimd φ l Fn ran G b ran G b l b b h ran l b ran G h Y h Y
171 166 170 mpd φ l Fn ran G b ran G b l b b h ran l h Y
172 171 ex φ l Fn ran G b ran G b l b b h ran l h Y
173 39 172 ralrimi φ l Fn ran G b ran G b l b b h ran l h Y
174 dfss3 ran l Y z ran l z Y
175 nfrab1 _ h h A | t T 0 h t h t 1
176 4 175 nfcxfr _ h Y
177 176 nfcri h z Y
178 nfv z h Y
179 eleq1 z = h z Y h Y
180 177 178 179 cbvralw z ran l z Y h ran l h Y
181 174 180 bitri ran l Y h ran l h Y
182 173 181 sylibr φ l Fn ran G b ran G b l b b ran l Y
183 df-f l : ran G Y l Fn ran G ran l Y
184 28 182 183 sylanbrc φ l Fn ran G b ran G b l b b l : ran G Y
185 dffn3 G Fn R G : R ran G
186 63 185 sylib φ G : R ran G
187 186 adantr φ l Fn ran G b ran G b l b b G : R ran G
188 f1of v : 1 M 1-1 onto R v : 1 M R
189 9 188 syl φ v : 1 M R
190 189 adantr φ l Fn ran G b ran G b l b b v : 1 M R
191 fco G : R ran G v : 1 M R G v : 1 M ran G
192 187 190 191 syl2anc φ l Fn ran G b ran G b l b b G v : 1 M ran G
193 fco l : ran G Y G v : 1 M ran G l G v : 1 M Y
194 184 192 193 syl2anc φ l Fn ran G b ran G b l b b l G v : 1 M Y
195 fvco3 G v : 1 M ran G i 1 M l G v i = l G v i
196 192 195 sylan φ l Fn ran G b ran G b l b b i 1 M l G v i = l G v i
197 simpll φ l Fn ran G b ran G b l b b i 1 M φ
198 simplrr φ l Fn ran G b ran G b l b b i 1 M b ran G b l b b
199 192 ffvelrnda φ l Fn ran G b ran G b l b b i 1 M G v i ran G
200 simp3 φ b ran G b l b b G v i ran G G v i ran G
201 nfv b G v i ran G
202 43 45 201 nf3an b φ b ran G b l b b G v i ran G
203 nfv b l G v i G v i
204 202 203 nfim b φ b ran G b l b b G v i ran G l G v i G v i
205 eleq1 b = G v i b ran G G v i ran G
206 205 3anbi3d b = G v i φ b ran G b l b b b ran G φ b ran G b l b b G v i ran G
207 fveq2 b = G v i l b = l G v i
208 id b = G v i b = G v i
209 207 208 eleq12d b = G v i l b b l G v i G v i
210 206 209 imbi12d b = G v i φ b ran G b l b b b ran G l b b φ b ran G b l b b G v i ran G l G v i G v i
211 204 210 126 vtoclg1f G v i ran G φ b ran G b l b b G v i ran G l G v i G v i
212 200 211 mpcom φ b ran G b l b b G v i ran G l G v i G v i
213 197 198 199 212 syl3anc φ l Fn ran G b ran G b l b b i 1 M l G v i G v i
214 196 213 eqeltrd φ l Fn ran G b ran G b l b b i 1 M l G v i G v i
215 fvco3 v : 1 M R i 1 M G v i = G v i
216 189 215 sylan φ i 1 M G v i = G v i
217 raleq w = v i t w h t < E M t v i h t < E M
218 217 3anbi2d w = v i t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t
219 218 rabbidv w = v i h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t = h A | t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t
220 189 ffvelrnda φ i 1 M v i R
221 13 adantr φ i 1 M A V
222 rabexg A V h A | t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t V
223 221 222 syl φ i 1 M h A | t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t V
224 6 219 220 223 fvmptd3 φ i 1 M G v i = h A | t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t
225 216 224 eqtrd φ i 1 M G v i = h A | t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t
226 225 adantlr φ l Fn ran G b ran G b l b b i 1 M G v i = h A | t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t
227 226 eleq2d φ l Fn ran G b ran G b l b b i 1 M l G v i G v i l G v i h A | t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t
228 nfcv _ h v
229 33 228 nfco _ h G v
230 29 229 nfco _ h l G v
231 nfcv _ h i
232 230 231 nffv _ h l G v i
233 nfcv _ h A
234 nfcv _ h T
235 nfcv _ h 0
236 nfcv _ h
237 nfcv _ h t
238 232 237 nffv _ h l G v i t
239 235 236 238 nfbr h 0 l G v i t
240 nfcv _ h 1
241 238 236 240 nfbr h l G v i t 1
242 239 241 nfan h 0 l G v i t l G v i t 1
243 234 242 nfralw h t T 0 l G v i t l G v i t 1
244 nfcv _ h v i
245 nfcv _ h <
246 nfcv _ h E M
247 238 245 246 nfbr h l G v i t < E M
248 244 247 nfralw h t v i l G v i t < E M
249 nfcv _ h T U
250 nfcv _ h 1 E M
251 250 245 238 nfbr h 1 E M < l G v i t
252 249 251 nfralw h t T U 1 E M < l G v i t
253 243 248 252 nf3an h t T 0 l G v i t l G v i t 1 t v i l G v i t < E M t T U 1 E M < l G v i t
254 nfcv _ t h
255 nfcv _ t l
256 nfcv _ t R
257 nfra1 t t T 0 h t h t 1
258 nfra1 t t w h t < E M
259 nfra1 t t T U 1 E M < h t
260 257 258 259 nf3an t t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
261 nfcv _ t A
262 260 261 nfrabw _ t h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
263 256 262 nfmpt _ t w R h A | t T 0 h t h t 1 t w h t < E M t T U 1 E M < h t
264 6 263 nfcxfr _ t G
265 nfcv _ t v
266 264 265 nfco _ t G v
267 255 266 nfco _ t l G v
268 nfcv _ t i
269 267 268 nffv _ t l G v i
270 254 269 nfeq t h = l G v i
271 fveq1 h = l G v i h t = l G v i t
272 271 breq2d h = l G v i 0 h t 0 l G v i t
273 271 breq1d h = l G v i h t 1 l G v i t 1
274 272 273 anbi12d h = l G v i 0 h t h t 1 0 l G v i t l G v i t 1
275 270 274 ralbid h = l G v i t T 0 h t h t 1 t T 0 l G v i t l G v i t 1
276 271 breq1d h = l G v i h t < E M l G v i t < E M
277 270 276 ralbid h = l G v i t v i h t < E M t v i l G v i t < E M
278 271 breq2d h = l G v i 1 E M < h t 1 E M < l G v i t
279 270 278 ralbid h = l G v i t T U 1 E M < h t t T U 1 E M < l G v i t
280 275 277 279 3anbi123d h = l G v i t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t t T 0 l G v i t l G v i t 1 t v i l G v i t < E M t T U 1 E M < l G v i t
281 232 233 253 280 elrabf l G v i h A | t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t l G v i A t T 0 l G v i t l G v i t 1 t v i l G v i t < E M t T U 1 E M < l G v i t
282 281 simprbi l G v i h A | t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t t T 0 l G v i t l G v i t 1 t v i l G v i t < E M t T U 1 E M < l G v i t
283 282 simp2d l G v i h A | t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t t v i l G v i t < E M
284 227 283 syl6bi φ l Fn ran G b ran G b l b b i 1 M l G v i G v i t v i l G v i t < E M
285 214 284 mpd φ l Fn ran G b ran G b l b b i 1 M t v i l G v i t < E M
286 264 nfrn _ t ran G
287 255 286 nffn t l Fn ran G
288 nfv t b l b b
289 286 288 nfralw t b ran G b l b b
290 287 289 nfan t l Fn ran G b ran G b l b b
291 2 290 nfan t φ l Fn ran G b ran G b l b b
292 nfv t i 1 M
293 291 292 nfan t φ l Fn ran G b ran G b l b b i 1 M
294 11 ad3antrrr φ l Fn ran G b ran G b l b b i 1 M t B B T U
295 simpr φ l Fn ran G b ran G b l b b i 1 M t B t B
296 294 295 sseldd φ l Fn ran G b ran G b l b b i 1 M t B t T U
297 282 simp3d l G v i h A | t T 0 h t h t 1 t v i h t < E M t T U 1 E M < h t t T U 1 E M < l G v i t
298 227 297 syl6bi φ l Fn ran G b ran G b l b b i 1 M l G v i G v i t T U 1 E M < l G v i t
299 214 298 mpd φ l Fn ran G b ran G b l b b i 1 M t T U 1 E M < l G v i t
300 299 r19.21bi φ l Fn ran G b ran G b l b b i 1 M t T U 1 E M < l G v i t
301 296 300 syldan φ l Fn ran G b ran G b l b b i 1 M t B 1 E M < l G v i t
302 301 ex φ l Fn ran G b ran G b l b b i 1 M t B 1 E M < l G v i t
303 293 302 ralrimi φ l Fn ran G b ran G b l b b i 1 M t B 1 E M < l G v i t
304 285 303 jca φ l Fn ran G b ran G b l b b i 1 M t v i l G v i t < E M t B 1 E M < l G v i t
305 304 ralrimiva φ l Fn ran G b ran G b l b b i 1 M t v i l G v i t < E M t B 1 E M < l G v i t
306 194 305 jca φ l Fn ran G b ran G b l b b l G v : 1 M Y i 1 M t v i l G v i t < E M t B 1 E M < l G v i t
307 feq1 x = l G v x : 1 M Y l G v : 1 M Y
308 nfcv _ t x
309 308 267 nfeq t x = l G v
310 fveq1 x = l G v x i = l G v i
311 310 fveq1d x = l G v x i t = l G v i t
312 311 breq1d x = l G v x i t < E M l G v i t < E M
313 309 312 ralbid x = l G v t v i x i t < E M t v i l G v i t < E M
314 311 breq2d x = l G v 1 E M < x i t 1 E M < l G v i t
315 309 314 ralbid x = l G v t B 1 E M < x i t t B 1 E M < l G v i t
316 313 315 anbi12d x = l G v t v i x i t < E M t B 1 E M < x i t t v i l G v i t < E M t B 1 E M < l G v i t
317 316 ralbidv x = l G v i 1 M t v i x i t < E M t B 1 E M < x i t i 1 M t v i l G v i t < E M t B 1 E M < l G v i t
318 307 317 anbi12d x = l G v x : 1 M Y i 1 M t v i x i t < E M t B 1 E M < x i t l G v : 1 M Y i 1 M t v i l G v i t < E M t B 1 E M < l G v i t
319 318 spcegv l G v V l G v : 1 M Y i 1 M t v i l G v i t < E M t B 1 E M < l G v i t x x : 1 M Y i 1 M t v i x i t < E M t B 1 E M < x i t
320 27 306 319 sylc φ l Fn ran G b ran G b l b b x x : 1 M Y i 1 M t v i x i t < E M t B 1 E M < x i t
321 16 320 exlimddv φ x x : 1 M Y i 1 M t v i x i t < E M t B 1 E M < x i t