Metamath Proof Explorer


Theorem stoweidlem54

Description: There exists a function x as in the proof of Lemma 2 in BrosowskiDeutsh p. 91. Here D is used to represent A in the paper, because here A is used for the subalgebra of functions. E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem54.1 iφ
stoweidlem54.2 tφ
stoweidlem54.3 yφ
stoweidlem54.4 wφ
stoweidlem54.5 T=J
stoweidlem54.6 Y=hA|tT0htht1
stoweidlem54.7 P=fY,gYtTftgt
stoweidlem54.8 F=tTi1Myit
stoweidlem54.9 Z=tTseq1×FtM
stoweidlem54.10 V=wJ|e+hAtT0htht1twht<etTU1e<ht
stoweidlem54.11 φfAgAtTftgtA
stoweidlem54.12 φfAf:T
stoweidlem54.13 φM
stoweidlem54.14 φW:1MV
stoweidlem54.15 φBT
stoweidlem54.16 φDranW
stoweidlem54.17 φDT
stoweidlem54.18 φyy:1MYi1MtWiyit<EMtB1EM<yit
stoweidlem54.19 φTV
stoweidlem54.20 φE+
stoweidlem54.21 φE<13
Assertion stoweidlem54 φxAtT0xtxt1tDxt<EtB1E<xt

Proof

Step Hyp Ref Expression
1 stoweidlem54.1 iφ
2 stoweidlem54.2 tφ
3 stoweidlem54.3 yφ
4 stoweidlem54.4 wφ
5 stoweidlem54.5 T=J
6 stoweidlem54.6 Y=hA|tT0htht1
7 stoweidlem54.7 P=fY,gYtTftgt
8 stoweidlem54.8 F=tTi1Myit
9 stoweidlem54.9 Z=tTseq1×FtM
10 stoweidlem54.10 V=wJ|e+hAtT0htht1twht<etTU1e<ht
11 stoweidlem54.11 φfAgAtTftgtA
12 stoweidlem54.12 φfAf:T
13 stoweidlem54.13 φM
14 stoweidlem54.14 φW:1MV
15 stoweidlem54.15 φBT
16 stoweidlem54.16 φDranW
17 stoweidlem54.17 φDT
18 stoweidlem54.18 φyy:1MYi1MtWiyit<EMtB1EM<yit
19 stoweidlem54.19 φTV
20 stoweidlem54.20 φE+
21 stoweidlem54.21 φE<13
22 nfv yxxAtT0xtxt1tDxt<EtB1E<xt
23 nfv iy:1MY
24 nfra1 ii1MtWiyit<EMtB1EM<yit
25 23 24 nfan iy:1MYi1MtWiyit<EMtB1EM<yit
26 1 25 nfan iφy:1MYi1MtWiyit<EMtB1EM<yit
27 nfcv _ty
28 nfcv _t1M
29 nfra1 ttT0htht1
30 nfcv _tA
31 29 30 nfrabw _thA|tT0htht1
32 6 31 nfcxfr _tY
33 27 28 32 nff ty:1MY
34 nfra1 ttWiyit<EM
35 nfra1 ttB1EM<yit
36 34 35 nfan ttWiyit<EMtB1EM<yit
37 28 36 nfralw ti1MtWiyit<EMtB1EM<yit
38 33 37 nfan ty:1MYi1MtWiyit<EMtB1EM<yit
39 2 38 nfan tφy:1MYi1MtWiyit<EMtB1EM<yit
40 nfv wy:1MYi1MtWiyit<EMtB1EM<yit
41 4 40 nfan wφy:1MYi1MtWiyit<EMtB1EM<yit
42 nfrab1 _wwJ|e+hAtT0htht1twht<etTU1e<ht
43 10 42 nfcxfr _wV
44 eqid seq1PyM=seq1PyM
45 13 adantr φy:1MYi1MtWiyit<EMtB1EM<yitM
46 14 adantr φy:1MYi1MtWiyit<EMtB1EM<yitW:1MV
47 simprl φy:1MYi1MtWiyit<EMtB1EM<yity:1MY
48 simpr φy:1MYi1MtWiyit<EMtB1EM<yitwVwV
49 10 reqabi wVwJe+hAtT0htht1twht<etTU1e<ht
50 49 simplbi wVwJ
51 elssuni wJwJ
52 51 5 sseqtrrdi wJwT
53 48 50 52 3syl φy:1MYi1MtWiyit<EMtB1EM<yitwVwT
54 16 adantr φy:1MYi1MtWiyit<EMtB1EM<yitDranW
55 17 adantr φy:1MYi1MtWiyit<EMtB1EM<yitDT
56 15 adantr φy:1MYi1MtWiyit<EMtB1EM<yitBT
57 r19.26 i1MtWiyit<EMtB1EM<yiti1MtWiyit<EMi1MtB1EM<yit
58 57 simplbi i1MtWiyit<EMtB1EM<yiti1MtWiyit<EM
59 58 ad2antll φy:1MYi1MtWiyit<EMtB1EM<yiti1MtWiyit<EM
60 59 r19.21bi φy:1MYi1MtWiyit<EMtB1EM<yiti1MtWiyit<EM
61 57 simprbi i1MtWiyit<EMtB1EM<yiti1MtB1EM<yit
62 61 ad2antll φy:1MYi1MtWiyit<EMtB1EM<yiti1MtB1EM<yit
63 62 r19.21bi φy:1MYi1MtWiyit<EMtB1EM<yiti1MtB1EM<yit
64 11 3adant1r φy:1MYi1MtWiyit<EMtB1EM<yitfAgAtTftgtA
65 12 adantlr φy:1MYi1MtWiyit<EMtB1EM<yitfAf:T
66 19 adantr φy:1MYi1MtWiyit<EMtB1EM<yitTV
67 20 adantr φy:1MYi1MtWiyit<EMtB1EM<yitE+
68 21 adantr φy:1MYi1MtWiyit<EMtB1EM<yitE<13
69 26 39 41 43 6 7 44 8 9 45 46 47 53 54 55 56 60 63 64 65 66 67 68 stoweidlem51 φy:1MYi1MtWiyit<EMtB1EM<yitxxAtT0xtxt1tDxt<EtB1E<xt
70 3 22 18 69 exlimdd φxxAtT0xtxt1tDxt<EtB1E<xt
71 df-rex xAtT0xtxt1tDxt<EtB1E<xtxxAtT0xtxt1tDxt<EtB1E<xt
72 70 71 sylibr φxAtT0xtxt1tDxt<EtB1E<xt