Description: There exists a function x as in the proof of Lemma 2 in BrosowskiDeutsh p. 91. Here D is used to represent A in the paper, because here A is used for the subalgebra of functions. E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem54.1 | |
|
stoweidlem54.2 | |
||
stoweidlem54.3 | |
||
stoweidlem54.4 | |
||
stoweidlem54.5 | |
||
stoweidlem54.6 | |
||
stoweidlem54.7 | |
||
stoweidlem54.8 | |
||
stoweidlem54.9 | |
||
stoweidlem54.10 | |
||
stoweidlem54.11 | |
||
stoweidlem54.12 | |
||
stoweidlem54.13 | |
||
stoweidlem54.14 | |
||
stoweidlem54.15 | |
||
stoweidlem54.16 | |
||
stoweidlem54.17 | |
||
stoweidlem54.18 | |
||
stoweidlem54.19 | |
||
stoweidlem54.20 | |
||
stoweidlem54.21 | |
||
Assertion | stoweidlem54 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem54.1 | |
|
2 | stoweidlem54.2 | |
|
3 | stoweidlem54.3 | |
|
4 | stoweidlem54.4 | |
|
5 | stoweidlem54.5 | |
|
6 | stoweidlem54.6 | |
|
7 | stoweidlem54.7 | |
|
8 | stoweidlem54.8 | |
|
9 | stoweidlem54.9 | |
|
10 | stoweidlem54.10 | |
|
11 | stoweidlem54.11 | |
|
12 | stoweidlem54.12 | |
|
13 | stoweidlem54.13 | |
|
14 | stoweidlem54.14 | |
|
15 | stoweidlem54.15 | |
|
16 | stoweidlem54.16 | |
|
17 | stoweidlem54.17 | |
|
18 | stoweidlem54.18 | |
|
19 | stoweidlem54.19 | |
|
20 | stoweidlem54.20 | |
|
21 | stoweidlem54.21 | |
|
22 | nfv | |
|
23 | nfv | |
|
24 | nfra1 | |
|
25 | 23 24 | nfan | |
26 | 1 25 | nfan | |
27 | nfcv | |
|
28 | nfcv | |
|
29 | nfra1 | |
|
30 | nfcv | |
|
31 | 29 30 | nfrabw | |
32 | 6 31 | nfcxfr | |
33 | 27 28 32 | nff | |
34 | nfra1 | |
|
35 | nfra1 | |
|
36 | 34 35 | nfan | |
37 | 28 36 | nfralw | |
38 | 33 37 | nfan | |
39 | 2 38 | nfan | |
40 | nfv | |
|
41 | 4 40 | nfan | |
42 | nfrab1 | |
|
43 | 10 42 | nfcxfr | |
44 | eqid | |
|
45 | 13 | adantr | |
46 | 14 | adantr | |
47 | simprl | |
|
48 | simpr | |
|
49 | 10 | reqabi | |
50 | 49 | simplbi | |
51 | elssuni | |
|
52 | 51 5 | sseqtrrdi | |
53 | 48 50 52 | 3syl | |
54 | 16 | adantr | |
55 | 17 | adantr | |
56 | 15 | adantr | |
57 | r19.26 | |
|
58 | 57 | simplbi | |
59 | 58 | ad2antll | |
60 | 59 | r19.21bi | |
61 | 57 | simprbi | |
62 | 61 | ad2antll | |
63 | 62 | r19.21bi | |
64 | 11 | 3adant1r | |
65 | 12 | adantlr | |
66 | 19 | adantr | |
67 | 20 | adantr | |
68 | 21 | adantr | |
69 | 26 39 41 43 6 7 44 8 9 45 46 47 53 54 55 56 60 63 64 65 66 67 68 | stoweidlem51 | |
70 | 3 22 18 69 | exlimdd | |
71 | df-rex | |
|
72 | 70 71 | sylibr | |