| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem58.1 |
|- F/_ t D |
| 2 |
|
stoweidlem58.2 |
|- F/_ t U |
| 3 |
|
stoweidlem58.3 |
|- F/ t ph |
| 4 |
|
stoweidlem58.4 |
|- K = ( topGen ` ran (,) ) |
| 5 |
|
stoweidlem58.5 |
|- T = U. J |
| 6 |
|
stoweidlem58.6 |
|- C = ( J Cn K ) |
| 7 |
|
stoweidlem58.7 |
|- ( ph -> J e. Comp ) |
| 8 |
|
stoweidlem58.8 |
|- ( ph -> A C_ C ) |
| 9 |
|
stoweidlem58.9 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
| 10 |
|
stoweidlem58.10 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
| 11 |
|
stoweidlem58.11 |
|- ( ( ph /\ a e. RR ) -> ( t e. T |-> a ) e. A ) |
| 12 |
|
stoweidlem58.12 |
|- ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. q e. A ( q ` r ) =/= ( q ` t ) ) |
| 13 |
|
stoweidlem58.13 |
|- ( ph -> B e. ( Clsd ` J ) ) |
| 14 |
|
stoweidlem58.14 |
|- ( ph -> D e. ( Clsd ` J ) ) |
| 15 |
|
stoweidlem58.15 |
|- ( ph -> ( B i^i D ) = (/) ) |
| 16 |
|
stoweidlem58.16 |
|- U = ( T \ B ) |
| 17 |
|
stoweidlem58.17 |
|- ( ph -> E e. RR+ ) |
| 18 |
|
stoweidlem58.18 |
|- ( ph -> E < ( 1 / 3 ) ) |
| 19 |
1
|
nfeq1 |
|- F/ t D = (/) |
| 20 |
3 19
|
nfan |
|- F/ t ( ph /\ D = (/) ) |
| 21 |
|
eqid |
|- ( t e. T |-> 1 ) = ( t e. T |-> 1 ) |
| 22 |
11
|
adantlr |
|- ( ( ( ph /\ D = (/) ) /\ a e. RR ) -> ( t e. T |-> a ) e. A ) |
| 23 |
13
|
adantr |
|- ( ( ph /\ D = (/) ) -> B e. ( Clsd ` J ) ) |
| 24 |
17
|
adantr |
|- ( ( ph /\ D = (/) ) -> E e. RR+ ) |
| 25 |
|
simpr |
|- ( ( ph /\ D = (/) ) -> D = (/) ) |
| 26 |
1 20 21 5 22 23 24 25
|
stoweidlem18 |
|- ( ( ph /\ D = (/) ) -> E. x e. A ( A. t e. T ( 0 <_ ( x ` t ) /\ ( x ` t ) <_ 1 ) /\ A. t e. D ( x ` t ) < E /\ A. t e. B ( 1 - E ) < ( x ` t ) ) ) |
| 27 |
|
nfcv |
|- F/_ t (/) |
| 28 |
1 27
|
nfne |
|- F/ t D =/= (/) |
| 29 |
3 28
|
nfan |
|- F/ t ( ph /\ D =/= (/) ) |
| 30 |
|
eqid |
|- { h e. A | A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) } = { h e. A | A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) } |
| 31 |
|
eqid |
|- { w e. J | A. e e. RR+ E. h e. A ( A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) /\ A. t e. w ( h ` t ) < e /\ A. t e. ( T \ U ) ( 1 - e ) < ( h ` t ) ) } = { w e. J | A. e e. RR+ E. h e. A ( A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) /\ A. t e. w ( h ` t ) < e /\ A. t e. ( T \ U ) ( 1 - e ) < ( h ` t ) ) } |
| 32 |
7
|
adantr |
|- ( ( ph /\ D =/= (/) ) -> J e. Comp ) |
| 33 |
8
|
adantr |
|- ( ( ph /\ D =/= (/) ) -> A C_ C ) |
| 34 |
9
|
3adant1r |
|- ( ( ( ph /\ D =/= (/) ) /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
| 35 |
10
|
3adant1r |
|- ( ( ( ph /\ D =/= (/) ) /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
| 36 |
11
|
adantlr |
|- ( ( ( ph /\ D =/= (/) ) /\ a e. RR ) -> ( t e. T |-> a ) e. A ) |
| 37 |
12
|
adantlr |
|- ( ( ( ph /\ D =/= (/) ) /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. q e. A ( q ` r ) =/= ( q ` t ) ) |
| 38 |
13
|
adantr |
|- ( ( ph /\ D =/= (/) ) -> B e. ( Clsd ` J ) ) |
| 39 |
14
|
adantr |
|- ( ( ph /\ D =/= (/) ) -> D e. ( Clsd ` J ) ) |
| 40 |
15
|
adantr |
|- ( ( ph /\ D =/= (/) ) -> ( B i^i D ) = (/) ) |
| 41 |
|
simpr |
|- ( ( ph /\ D =/= (/) ) -> D =/= (/) ) |
| 42 |
17
|
adantr |
|- ( ( ph /\ D =/= (/) ) -> E e. RR+ ) |
| 43 |
18
|
adantr |
|- ( ( ph /\ D =/= (/) ) -> E < ( 1 / 3 ) ) |
| 44 |
1 2 29 30 31 4 5 6 16 32 33 34 35 36 37 38 39 40 41 42 43
|
stoweidlem57 |
|- ( ( ph /\ D =/= (/) ) -> E. x e. A ( A. t e. T ( 0 <_ ( x ` t ) /\ ( x ` t ) <_ 1 ) /\ A. t e. D ( x ` t ) < E /\ A. t e. B ( 1 - E ) < ( x ` t ) ) ) |
| 45 |
26 44
|
pm2.61dane |
|- ( ph -> E. x e. A ( A. t e. T ( 0 <_ ( x ` t ) /\ ( x ` t ) <_ 1 ) /\ A. t e. D ( x ` t ) < E /\ A. t e. B ( 1 - E ) < ( x ` t ) ) ) |